Suppr超能文献

用于研究催化中双键活化的石墨烯吸附模板

Graphene as an Adsorption Template for Studying Double Bond Activation in Catalysis.

作者信息

Boix Virginia, Xu Wenbin, D'Acunto Giulio, Stubbe Johannes, Gallo Tamires, Døvre Strømsheim Marie, Zhu Suyun, Scardamaglia Mattia, Shavorskiy Andrey, Reuter Karsten, Andersen Mie, Knudsen Jan

机构信息

Division of Synchrotron Radiation Research, Department of Physics, Lund University, Sölvegatan 14, 22362 Lund, Sweden.

NanoLund, Lund University, Professorsgatan 1, 22362 Lund, Sweden.

出版信息

J Phys Chem C Nanomater Interfaces. 2022 Aug 25;126(33):14116-14124. doi: 10.1021/acs.jpcc.2c02293. Epub 2022 Aug 16.

Abstract

Hydrogenated graphene (H-Gr) is an extensively studied system not only because of its capabilities as a simplified model system for hydrocarbon chemistry but also because hydrogenation is a compelling method for Gr functionalization. However, knowledge of how H-Gr interacts with molecules at higher pressures and ambient conditions is lacking. Here we present experimental and theoretical evidence that room temperature O exposure at millibar pressures leads to preferential removal of H dimers on H-functionalized graphene, leaving H clusters on the surface. Our density functional theory (DFT) analysis shows that the removal of H dimers is the result of water or hydrogen peroxide formation. For water formation, we show that the two H atoms in the dimer motif attack one end of the physisorbed O molecule. Moreover, by comparing the reaction pathways in a vacuum with the ones on free-standing graphene and on the graphene/Ir(111) system, we find that the main role of graphene is to arrange the H atoms in geometrical positions, which facilitates the activation of the O=O double bond.

摘要

氢化石墨烯(H-Gr)是一个被广泛研究的体系,这不仅是因为它作为烃类化学简化模型体系的能力,还因为氢化是一种引人注目的石墨烯功能化方法。然而,对于H-Gr在更高压力和环境条件下如何与分子相互作用的认识尚缺。在此,我们给出实验和理论证据,即在毫巴压力下室温暴露于氧气会导致氢功能化石墨烯上的氢二聚体优先去除,在表面留下氢簇。我们的密度泛函理论(DFT)分析表明,氢二聚体的去除是形成水或过氧化氢的结果。对于水的形成,我们表明二聚体基序中的两个氢原子攻击物理吸附的氧分子的一端。此外,通过比较真空中与独立石墨烯以及石墨烯/Ir(111)体系上的反应路径,我们发现石墨烯的主要作用是将氢原子排列在几何位置,这促进了O=O双键的活化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2db9/9425632/d34ff29127b7/jp2c02293_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验