Department of Physics and Astronomy and Interdisciplinary Nanoscience Center iNANO, Aarhus University , Aarhus C DK-8000, Denmark.
CIC nanoGUNE and Ikerbasque, Basque Foundation of Science , Donostia-San Sebastian 20018, Spain.
ACS Nano. 2016 Dec 27;10(12):10798-10807. doi: 10.1021/acsnano.6b04671. Epub 2016 Nov 17.
Band gap engineering in hydrogen functionalized graphene is demonstrated by changing the symmetry of the functionalization structures. Small differences in hydrogen adsorbate binding energies on graphene on Ir(111) allow tailoring of highly periodic functionalization structures favoring one distinct region of the moiré supercell. Scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements show that a highly periodic hydrogen functionalized graphene sheet can thus be prepared by controlling the sample temperature (T) during hydrogen functionalization. At deposition temperatures of T = 645 K and above, hydrogen adsorbs exclusively on the HCP regions of the graphene/Ir(111) moiré structure. This finding is rationalized in terms of a slight preference for hydrogen clusters in the HCP regions over the FCC regions, as found by density functional theory calculations. Angle-resolved photoemission spectroscopy measurements demonstrate that the preferential functionalization of just one region of the moiré supercell results in a band gap opening with very limited associated band broadening. Thus, hydrogenation at elevated sample temperatures provides a pathway to efficient band gap engineering in graphene via the selective functionalization of specific regions of the moiré structure.
通过改变功能化结构的对称性,在氢化石墨烯中实现了能带隙工程。在 Ir(111) 上石墨烯上氢吸附物结合能的微小差异允许对高度周期性的功能化结构进行定制,从而有利于莫尔超晶格的一个独特区域。扫描隧道显微镜和 X 射线光电子能谱测量表明,通过控制在氢功能化过程中的样品温度 (T),可以制备出高度周期性的氢化石墨烯片。在 T = 645 K 及以上的沉积温度下,氢仅吸附在石墨烯/Ir(111)莫尔结构的 HCP 区域上。这一发现可以根据密度泛函理论计算得出的结论来合理化,即在 HCP 区域中,氢团簇相对于 FCC 区域具有轻微的偏好。角分辨光电子能谱测量表明,莫尔超晶格中仅一个区域的优先功能化导致带隙打开,同时关联的能带展宽非常有限。因此,在升高的样品温度下进行氢化提供了一种通过莫尔结构的特定区域的选择性功能化来实现石墨烯中有效能带隙工程的途径。