Zhu Meng, Pi Yong, Jiang Zekun, Wu Yanyan, Bu Hong, Bao Ji, Chen Yujuan, Zhao Lijun, Peng Yulan
Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, China.
Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, China.
Quant Imaging Med Surg. 2022 Sep;12(9):4633-4646. doi: 10.21037/qims-22-46.
The treatment and prognosis of breast ductal carcinoma in situ (DCIS) with and without microinvasion (MIC) are different. Ultrasound imaging shows that DCIS is a heterogeneous breast tumor with diverse manifestations. DCIS means that the cancer cells are confined in the duct without penetrating the basement membrane, MIC means that the cancer cells penetrate the basement membrane and the maximum diameter of any largest invasive lesion is less than or equal to 1 mm. This study was designed to evaluate how deep learning can be used to identify DCIS with MIC on ultrasound images.
The clinical and ultrasound data of 467 consecutive inpatients diagnosed with DCIS (213 with MIC) in West China Hospital of Sichuan University were collected from January 2013 to April 2019 and randomly apportioned to training and internal validation sets. An external validation set comprised data from Sichuan Provincial People's Hospital with 101 patients (33 with MIC) collected between January 2017 and December 2019. There were 2,492 original images; 66% of these were used to establish a model, and the remaining 34% were used to evaluate the model. Three experienced breast ultrasound clinicians analyzed the ultrasound images to establish a logistic regression model. Finally, the logistic regression model and five deep learning models (ResNet-50, ResNet-101, DenseNet-161, DenseNet-169, and Inception-v3) were compared and evaluated to assess their diagnostic efficiency when identifying MIC based on ultrasound image data.
The characteristics of high nuclear grade (P<0.001), necrosis (P=0.006), estrogen receptor negative (ER; P=0.003), progesterone receptor negative (PR; P=0.001), human epidermal growth factor receptor 2 positive (HER2+; P=0.034), lymphatic metastasis (P=0.008), and calcification (P<0.001) all showed significant correlations with MIC. The Inception-v3 model achieved the best performance (P<0.05) in MIC identification. The area under the receiver operating curve (AUC) of the Inception-v3 model was 0.803 [95% confidence interval (CI): 0.709 to 0.878], with a classification accuracy of 0.766, a sensitivity of 0.767, and a specificity of 0.765.
Deep learning can be used to identify MIC of breast DCIS from ultrasound images. Models based on Inception-v3 can provide automated detection of DCIS with MIC from ultrasound images.
伴有和不伴有微浸润(MIC)的乳腺导管原位癌(DCIS)的治疗和预后有所不同。超声成像显示,DCIS是一种表现多样的异质性乳腺肿瘤。DCIS是指癌细胞局限于导管内,未穿透基底膜;MIC是指癌细胞穿透基底膜,且任何最大浸润性病变的最大直径小于或等于1毫米。本研究旨在评估如何利用深度学习在超声图像上识别伴有MIC的DCIS。
收集了2013年1月至2019年4月在四川大学华西医院连续诊断为DCIS的467例住院患者(213例伴有MIC)的临床和超声数据,并随机分配到训练集和内部验证集。外部验证集包括2017年1月至2019年12月期间四川省人民医院收集的101例患者(33例伴有MIC)的数据。共有2492张原始图像;其中66%用于建立模型,其余34%用于评估模型。三位经验丰富的乳腺超声临床医生分析超声图像以建立逻辑回归模型。最后,对逻辑回归模型和五个深度学习模型(ResNet-50、ResNet-101、DenseNet-161、DenseNet-169和Inception-v3)进行比较和评估,以评估它们基于超声图像数据识别MIC时的诊断效率。
高核分级(P<0.001)、坏死(P=0.006)、雌激素受体阴性(ER;P=0.003)、孕激素受体阴性(PR;P=0.001)、人表皮生长因子受体2阳性(HER2+;P=0.034)、淋巴转移(P=0.008)和钙化(P<0.001)的特征均与MIC显示出显著相关性。Inception-v3模型在MIC识别方面表现最佳(P<0.05)。Inception-v3模型的受试者操作特征曲线下面积(AUC)为0.803 [95%置信区间(CI):0.709至0.878],分类准确率为0.766,灵敏度为0.767,特异性为0.765。
深度学习可用于从超声图像中识别乳腺DCIS的MIC。基于Inception-v3的模型可从超声图像中自动检测伴有MIC的DCIS。