文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习影像组学在临床分期为T1-2期乳腺癌患者腋窝淋巴结转移预测中的应用

Deep learning radiomics for prediction of axillary lymph node metastasis in patients with clinical stage T1-2 breast cancer.

作者信息

Wei Wei, Ma Qiang, Feng Huijun, Wei Tianjun, Jiang Feng, Fan Lifang, Zhang Wei, Xu Jingya, Zhang Xia

机构信息

Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.

School of Medical Imaging, Wannan Medical College, Wuhu, China.

出版信息

Quant Imaging Med Surg. 2023 Aug 1;13(8):4995-5011. doi: 10.21037/qims-22-1257. Epub 2023 Jun 8.


DOI:10.21037/qims-22-1257
PMID:37581073
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10423344/
Abstract

BACKGROUND: This study investigates whether deep learning radiomics of conventional ultrasound images can predict preoperative axillary lymph node (ALN) status in patients with clinical stages T1-2 breast cancer (BC). METHODS: This study retrospectively analyzed the preoperative ultrasound data of 892 patients with BC, who were classified into training (n=535), validation (n=178), and test (n=179) cohorts. Linear combinations of the selected features were weighted by their coefficients to obtain the predicted score. Then, deep learning radiomic features were extracted from the ultrasound images to evaluate the ALN status. Receiver-operating characteristic curves were drawn, followed by the calculation of the area under the curve (AUC) to assess the accuracy of the prediction model in predicting axillary lymph node metastasis (ALNM) in the three cohorts. RESULTS: Deep learning radiomics combined with radiomics and clinical parameters was the optimal diagnostic predictor of the ALN status in the absence and presence of ALNM, with the AUC of 0.920 (95% confidence interval: 0.872 and 0.968, respectively). Additionally, this combination could also differentiate low-load ALNM [N + (1-2)] from heavy-load ALNM with ≥3 positive nodes [N + (≥3)] in the test cohort, with the AUC of 0.819 (95% confidence interval: 0.568 and 1.00, respectively). CONCLUSIONS: Conclusively, deep learning radiomics of ultrasound images is a non-invasive approach to predicting preoperative ALNM in BC.

摘要

背景:本研究旨在探讨传统超声图像的深度学习放射组学能否预测临床分期为T1 - 2期乳腺癌(BC)患者的术前腋窝淋巴结(ALN)状态。 方法:本研究回顾性分析了892例BC患者的术前超声数据,这些患者被分为训练组(n = 535)、验证组(n = 178)和测试组(n = 179)。所选特征的线性组合通过其系数加权以获得预测分数。然后,从超声图像中提取深度学习放射组学特征以评估ALN状态。绘制受试者操作特征曲线,随后计算曲线下面积(AUC),以评估预测模型在三个队列中预测腋窝淋巴结转移(ALNM)的准确性。 结果:在有无ALNM的情况下,深度学习放射组学结合放射组学和临床参数是ALN状态的最佳诊断预测指标,AUC分别为0.920(95%置信区间:0.872和0.968)。此外,在测试队列中,这种组合还可以区分低负荷ALNM [N + (1 - 2)]和≥3个阳性淋巴结的高负荷ALNM [N + (≥3)],AUC为0.819(95%置信区间:0.568和1.00)。 结论:总之,超声图像的深度学习放射组学是一种预测BC患者术前ALNM的非侵入性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/91aa418753d3/qims-13-08-4995-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/6ea052391cb7/qims-13-08-4995-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/b74485d6cc30/qims-13-08-4995-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/cbd79fdbc1c0/qims-13-08-4995-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/c26a147af921/qims-13-08-4995-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/72180ce414fb/qims-13-08-4995-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/fdde4b8acd1f/qims-13-08-4995-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/4040bd93c4b1/qims-13-08-4995-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/9046fdb66c4a/qims-13-08-4995-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/91aa418753d3/qims-13-08-4995-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/6ea052391cb7/qims-13-08-4995-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/b74485d6cc30/qims-13-08-4995-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/cbd79fdbc1c0/qims-13-08-4995-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/c26a147af921/qims-13-08-4995-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/72180ce414fb/qims-13-08-4995-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/fdde4b8acd1f/qims-13-08-4995-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/4040bd93c4b1/qims-13-08-4995-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/9046fdb66c4a/qims-13-08-4995-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f31/10423344/91aa418753d3/qims-13-08-4995-f9.jpg

相似文献

[1]
Deep learning radiomics for prediction of axillary lymph node metastasis in patients with clinical stage T1-2 breast cancer.

Quant Imaging Med Surg. 2023-8-1

[2]
Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.

EBioMedicine. 2021-7

[3]
Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer.

Med Phys. 2022-12

[4]
Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.

JAMA Netw Open. 2020-12-1

[5]
Could Ultrasound-Based Radiomics Noninvasively Predict Axillary Lymph Node Metastasis in Breast Cancer?

J Ultrasound Med. 2020-10

[6]
Prediction of axillary lymph node metastasis using a magnetic resonance imaging radiomics model of invasive breast cancer primary tumor.

Cancer Imaging. 2024-9-13

[7]
Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast Cancer.

J Digit Imaging. 2023-8

[8]
Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Based on Intratumoral and Peritumoral DCE-MRI Radiomics Nomogram.

Contrast Media Mol Imaging. 2022

[9]
Radiomics nomogram based on digital breast tomosynthesis: preoperative evaluation of axillary lymph node metastasis in breast carcinoma.

J Cancer Res Clin Oncol. 2023-9

[10]
Radiomics in cone-beam breast CT for the prediction of axillary lymph node metastasis in breast cancer: a multi-center multi-device study.

Eur Radiol. 2024-4

引用本文的文献

[1]
Predictive model integrating deep learning and clinical features based on ultrasound imaging data for surgical intervention in intussusception in children younger than 8 months.

BMJ Open. 2025-8-22

[2]
18F-FDG PET/CT-based deep radiomic models for enhancing chemotherapy response prediction in breast cancer.

Med Oncol. 2025-8-11

[3]
Modeling the risk of axillary lymph node metastasis after neoadjuvant chemotherapy in breast cancer: A retrospective study.

Mol Clin Oncol. 2025-7-23

[4]
Ultrasound derived deep learning features for predicting axillary lymph node metastasis in breast cancer using graph convolutional networks in a multicenter study.

Sci Rep. 2025-7-30

[5]
Ultrasound-based deep learning radiomics for enhanced axillary lymph node metastasis assessment: a multicenter study.

Oncologist. 2025-5-8

[6]
Prediction of axillary lymph node metastasis in T1 breast cancer using diffuse optical tomography, strain elastography and molecular markers.

Quant Imaging Med Surg. 2025-3-3

[7]
Prediction of axillary nodal burden using preoperative magnetic resonance imaging scoring in patients with clinically node-negative breast cancer: a retrospective cohort study.

Gland Surg. 2024-12-31

[8]
Artificial intelligence performance in ultrasound-based lymph node diagnosis: a systematic review and meta-analysis.

BMC Cancer. 2025-1-13

本文引用的文献

[1]
A systematic review on the use of explainability in deep learning systems for computer aided diagnosis in radiology: Limited use of explainable AI?

Eur J Radiol. 2022-12

[2]
Deep learning in breast imaging.

BJR Open. 2022-5-13

[3]
Application of deep learning to identify ductal carcinoma and microinvasion of the breast using ultrasound imaging.

Quant Imaging Med Surg. 2022-9

[4]
Deep learning radiomics for focal liver lesions diagnosis on long-range contrast-enhanced ultrasound and clinical factors.

Quant Imaging Med Surg. 2022-6

[5]
Multi-center evaluation of artificial intelligent imaging and clinical models for predicting neoadjuvant chemotherapy response in breast cancer.

Breast Cancer Res Treat. 2022-5

[6]
Predicting Axillary Lymph Node Status With a Nomogram Based on Breast Lesion Ultrasound Features: Performance in N1 Breast Cancer Patients.

Front Oncol. 2020-10-27

[7]
Could Ultrasound-Based Radiomics Noninvasively Predict Axillary Lymph Node Metastasis in Breast Cancer?

J Ultrasound Med. 2020-10

[8]
Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer.

Nat Commun. 2020-3-6

[9]
Ultrasound as a replacement for physical examination in clinical staging of axillary lymph nodes in breast cancer patients.

Thorac Cancer. 2020-1

[10]
Risk factors for axillary lymph node metastases in clinical stage T1-2N0M0 breast cancer patients.

Medicine (Baltimore). 2019-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索