Basak Aniruddha, Schmidt Kevin M, Mengshoel Ole Jakob
Carnegie Mellon University, Pittsburgh, USA.
Geology, Minerals, Energy, and Geophysics Science Center, U. S. Geological Survey, Moffett Field, California USA.
Int J Data Sci Anal. 2023;15(1):9-32. doi: 10.1007/s41060-022-00347-8. Epub 2022 Aug 31.
Soil moisture is critical to agricultural business, ecosystem health, and certain hydrologically driven natural disasters. Monitoring data, though, is prone to instrumental noise, wide ranging extrema, and nonstationary response to rainfall where ground conditions change. Furthermore, existing soil moisture models generally forecast poorly for time periods greater than a few hours. To improve such forecasts, we introduce two data-driven models, the Naive Accumulative Representation (NAR) and the Additive Exponential Accumulative Representation (AEAR). Both of these models are rooted in deterministic, physically based hydrology, and we study their capabilities in forecasting soil moisture over time periods longer than a few hours. Learned model parameters represent the physically based unsaturated hydrological redistribution processes of gravity and suction. We validate our models using soil moisture and rainfall time series data collected from a steep gradient, post-wildfire site in southern California. Data analysis is complicated by rapid landscape change observed in steep, burned hillslopes in response to even small to moderate rain events. The proposed NAR and AEAR models are, in forecasting experiments, shown to be competitive with several established and state-of-the-art baselines. The AEAR model fits the data well for three distinct soil textures at variable depths below the ground surface (5, 15, and 30 cm). Similar robust results are demonstrated in controlled, laboratory-based experiments. Our AEAR model includes readily interpretable hydrologic parameters and provides more accurate forecasts than existing models for time horizons of 10-24 h. Such extended periods of warning for natural disasters, such as floods and landslides, provide actionable knowledge to reduce loss of life and property.
土壤湿度对农业生产、生态系统健康以及某些由水文驱动的自然灾害至关重要。然而,监测数据容易受到仪器噪声、大范围极值以及当地面条件变化时对降雨的非平稳响应的影响。此外,现有的土壤湿度模型通常在预测超过几小时的时间段时效果不佳。为了改进此类预测,我们引入了两种数据驱动模型,即朴素累积表示(NAR)模型和加法指数累积表示(AEAR)模型。这两种模型都基于确定性的物理水文原理,我们研究了它们在预测超过几小时时间段内土壤湿度的能力。学习到的模型参数代表了基于物理的重力和吸力作用下的非饱和水文再分配过程。我们使用从南加州一个陡峭梯度的野火后场地收集的土壤湿度和降雨时间序列数据对模型进行了验证。由于在陡峭的火烧山坡上,即使是小到中等降雨事件也会导致景观迅速变化,数据分析变得复杂。在预测实验中,所提出的NAR和AEAR模型被证明与几个既定的和最先进的基线模型具有竞争力。AEAR模型对于地面以下不同深度(5厘米、15厘米和30厘米)的三种不同土壤质地的数据拟合良好。在基于实验室的对照实验中也得到了类似的稳健结果。我们的AEAR模型包含易于解释的水文参数,并且在10 - 24小时的时间范围内比现有模型提供更准确的预测。对于洪水和山体滑坡等自然灾害的这种延长预警期,提供了可采取行动的知识,以减少生命和财产损失。