Suppr超能文献

一种基于数据驱动的土壤储水能力特征构建方法。

A Data-Driven Approach for Building the Profile of Water Storage Capacity of Soils.

机构信息

School of Electronic Engineering, Dublin City University, D09 DXA0 Dublin, Ireland.

DCU Water Institute, Dublin City University, D09 K20V Dublin, Ireland.

出版信息

Sensors (Basel). 2023 Jun 15;23(12):5599. doi: 10.3390/s23125599.

Abstract

The soil water storage capacity is critical for soil management as it drives crop production, soil carbon sequestration, and soil quality and health. It depends on soil textural class, depth, land-use and soil management practices; therefore, the complexity strongly limits its estimation on a large scale with conventional-process-based approaches. In this paper, a machine learning approach is proposed to build the profile of the soil water storage capacity. A neural network is designed to estimate the soil moisture from the meteorology data input. By taking the soil moisture as a proxy in the modelling, the training captures those impact factors of soil water storage capacity and their nonlinear interaction implicitly without knowing the underlying soil hydrologic processes. An internal vector of the proposed neural network assimilates the soil moisture response to meteorological conditions and is regulated as the profile of the soil water storage capacity. The proposed approach is data-driven. Since the low-cost soil moisture sensors have made soil moisture monitoring simple and the meteorology data are easy to obtain, the proposed approach enables a convenient way of estimating soil water storage capacity in a high sampling resolution and at a large scale. Moreover, an average root mean squared deviation at 0.0307m3/m3 can be achieved in the soil moisture estimation; hence, the trained model can be deployed as an alternative to the expensive sensor networks for continuous soil moisture monitoring. The proposed approach innovatively represents the soil water storage capacity as a vector profile rather than a single value indicator. Compared with the single value indicator, which is common in hydrology, a multidimensional vector can encode more information and thus has a more powerful representation. This can be seen in the anomaly detection demonstrated in the paper, where subtle differences in soil water storage capacity among the sensor sites can be captured even though these sensors are installed on the same grassland. Another merit of vector representation is that advanced numeric methods can be applied to soil analysis. This paper demonstrates such an advantage by clustering sensor sites into groups with the unsupervised K-means clustering on the profile vectors which encapsulate soil characteristics and land properties of each sensor site implicitly.

摘要

土壤水分储量对于土壤管理至关重要,因为它影响作物生产、土壤碳固存以及土壤质量和健康。它取决于土壤质地类别、深度、土地利用和土壤管理实践;因此,其复杂性强烈限制了用传统基于过程的方法在大范围内进行估计。本文提出了一种基于机器学习的方法来构建土壤水分储量剖面。设计了一个神经网络来根据气象数据输入估计土壤湿度。通过将土壤湿度作为建模中的代理,训练过程隐式地捕获了那些影响土壤水分储量的因素及其非线性相互作用,而无需了解潜在的土壤水文过程。所提出的神经网络的内部向量整合了土壤湿度对气象条件的响应,并被调节为土壤水分储量的剖面。所提出的方法是数据驱动的。由于低成本的土壤湿度传感器使得土壤湿度监测变得简单,并且气象数据易于获取,因此所提出的方法为以高采样分辨率和大尺度估算土壤水分储量提供了一种便捷的方式。此外,在土壤湿度估计中可以实现平均均方根偏差为 0.0307m3/m3;因此,训练后的模型可以替代昂贵的传感器网络用于连续的土壤湿度监测。所提出的方法创新性地将土壤水分储量表示为向量剖面,而不是单个值指标。与水文领域中常见的单个值指标相比,多维向量可以编码更多信息,因此具有更强大的表示能力。这在本文演示的异常检测中可以看出,即使这些传感器安装在同一片草原上,也可以捕捉到传感器站点之间土壤水分储量的细微差异。向量表示的另一个优点是可以应用高级数值方法进行土壤分析。本文通过在剖面向量上应用无监督 K-均值聚类对传感器站点进行聚类,将土壤特征和每个传感器站点的土地属性隐式地包含在向量中,展示了这种优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/846d/10304599/67b0ea338bd1/sensors-23-05599-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验