Suppr超能文献

使用特征工程和机器学习算法进行早期心脏病预测。

Early heart disease prediction using feature engineering and machine learning algorithms.

作者信息

Bouqentar Mohammed Amine, Terrada Oumaima, Hamida Soufiane, Saleh Shawki, Lamrani Driss, Cherradi Bouchaib, Raihani Abdelhadi

机构信息

EEIS Laboratory, ENSET of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco.

2IACS Laboratory, ENSET, University Hassan II of Casablanca, Mohammedia, Morocco.

出版信息

Heliyon. 2024 Oct 1;10(19):e38731. doi: 10.1016/j.heliyon.2024.e38731. eCollection 2024 Oct 15.

Abstract

Heart disease is one of the most widespread global health issues, it is the reason behind around 32 % of deaths worldwide every year. The early prediction and diagnosis of heart diseases are critical for effective treatment and sickness management. Despite the efforts of healthcare professionals, cardiovascular surgeons and cardiologists' misdiagnosis and misinterpretation of test results may happen every day. This study addresses the growing global health challenge raised by Cardiovascular Diseases (CVDs), which account for 32 % of all deaths worldwide, according to the World Health Organization (WHO). With the progress of Machine Learning (ML) and Deep Learning (DL) techniques as part of Artificial Intelligence (AI), these technologies have become crucial for predicting and diagnosing CVDs. This research aims to develop an ML system for the early prediction of cardiovascular diseases by choosing one of the powerful existing ML algorithms after a deep comparative analysis of several. To achieve this work, the Cleveland and Statlog heart datasets from international platforms are used in this study to evaluate and validate the system's performance. The Cleveland dataset is categorized and used to train various ML algorithms, including decision tree, random forest, support vector machine, logistic regression, adaptive boosting, and K-nearest neighbors. The performance of each algorithm is assessed based on accuracy, precision, recall, F1 score, and the Area Under the Curve metrics. Hyperparameter tuning approaches have been employed to find the best hyperparameters that reflect the optimal performance of the used algorithms based on different evaluation approaches including 10-fold cross-validation with a 95 % confidence interval. The study's findings highlight the potential of ML in improving the early prediction and diagnosis of cardiovascular diseases. By comparing and analyzing the performance of the applied algorithms on both the Cleveland and Statlog heart datasets, this research contributes to the advancement of ML techniques in the medical field. The developed ML system offers a valuable tool for healthcare professionals in the early prediction and diagnosis of cardiovascular diseases, with implications for the prediction and diagnosis of other diseases as well.

摘要

心脏病是全球最普遍的健康问题之一,每年全球约32%的死亡都与之有关。心脏病的早期预测和诊断对于有效治疗和疾病管理至关重要。尽管医疗专业人员付出了努力,但心血管外科医生和心脏病专家每天仍可能出现对检查结果的误诊和误判。根据世界卫生组织(WHO)的数据,心血管疾病(CVD)引发了日益严峻的全球健康挑战,其导致了全球32%的死亡。随着作为人工智能(AI)一部分的机器学习(ML)和深度学习(DL)技术的进步,这些技术对于预测和诊断CVD变得至关重要。本研究旨在通过对几种现有强大ML算法进行深入比较分析后选择其一,开发一个用于心血管疾病早期预测的ML系统。为完成这项工作,本研究使用了来自国际平台的克利夫兰和Statlog心脏数据集来评估和验证该系统的性能。克利夫兰数据集被分类并用于训练各种ML算法,包括决策树、随机森林、支持向量机、逻辑回归、自适应增强和K近邻算法。基于准确率、精确率、召回率、F1分数和曲线下面积指标来评估每种算法的性能。已经采用超参数调整方法来找到最佳超参数,这些超参数基于不同的评估方法(包括具有95%置信区间的10折交叉验证)反映所用算法的最佳性能。该研究结果突出了ML在改善心血管疾病早期预测和诊断方面的潜力。通过比较和分析所应用算法在克利夫兰和Statlog心脏数据集上的性能,本研究为ML技术在医学领域的发展做出了贡献。所开发的ML系统为医疗专业人员在心血管疾病的早期预测和诊断中提供了一个有价值的工具,对其他疾病的预测和诊断也有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/065a/11471268/807851841b80/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验