Suppr超能文献

一株假单胞菌对1,4-二氯苯的降解作用

Degradation of 1,4-dichlorobenzene by a Pseudomonas sp.

作者信息

Spain J C, Nishino S F

出版信息

Appl Environ Microbiol. 1987 May;53(5):1010-9. doi: 10.1128/aem.53.5.1010-1019.1987.

Abstract

A Pseudomonas species able to degrade p-dichlorobenzene as the sole source of carbon and energy was isolated by selective enrichment from activated sludge. The organism also grew well on chlorobenzene and benzene. Washed cells released chloride in stoichiometric amounts from o-, m-, and p-dichlorobenzene, 2,5-dichlorophenol, 4-chlorophenol, 3-chlorocatechol, 4-chlorocatechol, and 3,6-dichlorocatechol. Initial steps in the pathway for p-dichlorobenzene degradation were determined by isolation of metabolites, simultaneous adaptation studies, and assay of enzymes in cell extracts. Results indicate that p-dichlorobenzene was initially converted by a dioxygenase to 3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene, which was converted to 3,6-dichlorocatechol by an NAD+-dependent dehydrogenase. Ring cleavage of 3,6-dichlorocatechol was by a 1,2-oxygenase to form 2,5-dichloro-cis, cis-muconate. Enzymes for degradation of haloaromatic compounds were induced in cells grown on chlorobenzene or p-dichlorobenzene, but not in cells grown on benzene, succinate, or yeast extract. Enzymes of the ortho pathway induced in cells grown on benzene did not attack chlorobenzenes or chlorocatechols.

摘要

通过从活性污泥中进行选择性富集,分离出了一种能够将对二氯苯作为唯一碳源和能源进行降解的假单胞菌属细菌。该微生物在氯苯和苯上也生长良好。洗涤后的细胞从邻二氯苯、间二氯苯、对二氯苯、2,5 -二氯苯酚、4 -氯苯酚、3 -氯儿茶酚、4 -氯儿茶酚和3,6 -二氯儿茶酚中以化学计量的量释放出氯离子。通过代谢产物的分离、同步适应性研究以及细胞提取物中酶的测定,确定了对二氯苯降解途径的初始步骤。结果表明,对二氯苯最初由双加氧酶转化为3,6 -二氯 -顺式 -1,2 -二羟基环己 -3,5 -二烯,后者通过一种依赖于NAD⁺的脱氢酶转化为3,6 -二氯儿茶酚。3,6 -二氯儿茶酚的环裂解是由一种1,2 -加氧酶进行的,形成2,5 -二氯 -顺式,顺式 -粘康酸。在以氯苯或对二氯苯生长的细胞中诱导产生了降解卤代芳烃化合物的酶,但在以苯、琥珀酸盐或酵母提取物生长的细胞中则没有。在以苯生长的细胞中诱导产生的邻位途径的酶不会攻击氯苯或氯儿茶酚。

相似文献

1
Degradation of 1,4-dichlorobenzene by a Pseudomonas sp.
Appl Environ Microbiol. 1987 May;53(5):1010-9. doi: 10.1128/aem.53.5.1010-1019.1987.
2
Degradation of 1,2-dichlorobenzene by a Pseudomonas sp.
Appl Environ Microbiol. 1988 Feb;54(2):294-301. doi: 10.1128/aem.54.2.294-301.1988.
3
Degradation of 1,4-dichlorobenzene by Xanthobacter flavus 14p1.
Appl Environ Microbiol. 1995 Nov;61(11):3884-8. doi: 10.1128/aem.61.11.3884-3888.1995.
4
Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175.
Appl Environ Microbiol. 1986 Dec;52(6):1374-81. doi: 10.1128/aem.52.6.1374-1381.1986.
5
Microbial degradation of 1,3-dichlorobenzene.
Appl Environ Microbiol. 1986 Oct;52(4):677-80. doi: 10.1128/aem.52.4.677-680.1986.
6
Enzymology of the degradation of (di)chlorobenzenes by Xanthobacter flavus 14p1.
Arch Microbiol. 1997 Jun;167(6):384-91. doi: 10.1007/s002030050459.
7
Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium.
Appl Environ Microbiol. 1984 Feb;47(2):395-402. doi: 10.1128/aem.47.2.395-402.1984.
9
Degradation of p-chlorotoluene by a mutant of Pseudomonas sp. strain JS6.
Appl Environ Microbiol. 1989 Feb;55(2):372-9. doi: 10.1128/aem.55.2.372-379.1989.
10
Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain.
Appl Environ Microbiol. 1991 Jan;57(1):157-62. doi: 10.1128/aem.57.1.157-162.1991.

引用本文的文献

1
Phylogenetic and Functional Diversity of Soluble Di-Iron Monooxygenases.
Environ Microbiol. 2025 Feb;27(2):e70050. doi: 10.1111/1462-2920.70050.
2
Thiobencarb Degradation by Pseudomonas sp. Th1 and Cupriavidus oxalaticus Th2 Isolated from Soil.
Curr Microbiol. 2023 Sep 19;80(11):342. doi: 10.1007/s00284-023-03456-0.
3
The influence of pesticides on the corrosion of a Roman bowl excavated in Kent, UK.
Sci Rep. 2022 Oct 6;12(1):14521. doi: 10.1038/s41598-022-17902-9.
4
Fly-over phylogeny across invertebrate to vertebrate: The giant panda and insects share a highly similar gut microbiota.
Comput Struct Biotechnol J. 2021 Aug 19;19:4676-4683. doi: 10.1016/j.csbj.2021.08.025. eCollection 2021.
8
Pathway and evolutionary implications of diphenylamine biodegradation by Burkholderia sp. strain JS667.
Appl Environ Microbiol. 2009 May;75(9):2694-704. doi: 10.1128/AEM.02198-08. Epub 2009 Feb 27.
9
The key role of chlorocatechol 1,2-dioxygenase in phytoremoval and degradation of catechol by transgenic Arabidopsis.
Plant Physiol. 2006 Oct;142(2):620-8. doi: 10.1104/pp.106.085936. Epub 2006 Aug 25.
10
Transformation of 2,4,6-Trinitrotoluene by Pseudomonas pseudoalcaligenes JS52.
Appl Environ Microbiol. 1997 May;63(5):2007-15. doi: 10.1128/aem.63.5.2007-2015.1997.

本文引用的文献

1
Comparison of p-Nitrophenol Biodegradation in Field and Laboratory Test Systems.
Appl Environ Microbiol. 1984 Nov;48(5):944-50. doi: 10.1128/aem.48.5.944-950.1984.
2
The formation of beta-ketoadipic acid by bacterial fission of aromatic rings.
Biochem J. 1951 Oct;49(5):671-4. doi: 10.1042/bj0490671.
3
Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives.
J Bacteriol. 1980 May;142(2):467-73. doi: 10.1128/jb.142.2.467-473.1980.
5
Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol.
Appl Environ Microbiol. 1981 May;41(5):1159-65. doi: 10.1128/aem.41.5.1159-1165.1981.
6
Degradation of 4-chlorophenylacetic acid by a Pseudomonas species.
J Bacteriol. 1981 Apr;146(1):64-8. doi: 10.1128/jb.146.1.64-68.1981.
8
TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway.
J Bacteriol. 1982 Apr;150(1):195-201. doi: 10.1128/jb.150.1.195-201.1982.
9
Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium.
Appl Environ Microbiol. 1984 Feb;47(2):395-402. doi: 10.1128/aem.47.2.395-402.1984.
10
Microbial removal of wastewater organic compounds as a function of input concentration in soil columns.
Appl Environ Microbiol. 1984 Nov;48(5):1039-45. doi: 10.1128/aem.48.5.1039-1045.1984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验