Suppr超能文献

基于转录组整合分析鉴定胰腺癌候选治疗靶基因及肿瘤浸润免疫细胞特征。

Identification of Candidate Therapeutic Target Genes and Profiling of Tumor-Infiltrating Immune Cells in Pancreatic Cancer via Integrated Transcriptomic Analysis.

机构信息

Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041 Shandong Province, China.

出版信息

Dis Markers. 2022 Aug 23;2022:3839480. doi: 10.1155/2022/3839480. eCollection 2022.

Abstract

Pancreatic cancer (PC) has a dismal prognosis despite advancing scientific and technological knowledge. The exploration of novel genes is critical to improving current therapeutic measures. This research is aimed at selecting hub genes that can act as candidate therapeutic target genes and as prognostic biomarkers in PC. Gene expression profiles of datasets GSE101448, GSE15471, and GSE62452 were extracted from the GEO database. The "limma" package was performed to select differentially expressed genes (DEGs) between PC and normal tissue samples in each dataset. Robust rank aggregation (RRA) algorithm was conducted to integrate multiple expression profiles and identify robust DEGs. GO analysis and KEGG analysis were conducted to identify the functional correlation of the DEGs. The CIBERSORT algorithm was conducted to estimate the immune cell composition of each tissue sample. STRING and Cytoscape were used to establish the protein-protein interaction (PPI) network. The cytoHubba plugin in Cytoscape was performed to identify hub genes. Survival analysis based on hub gene expression was performed with clinical information from TCGA database. 566 robust DEGs (338 upregulated genes and 226 downregulated genes) were identified. Tumor tissue had a higher infiltration of resting dendritic cells and tumor-associated macrophages (TAM), including M0, M1, and M2 macrophages, while infiltration levels of B memory cells, plasma cells, T cells CD8, T follicular helper cells, and NK cells in normal tissue were relatively higher. GO terms and KEGG pathway analysis results revealed enrichment in tumor-associated pathways, including the extracellular matrix organization, cell-substrate adhesion cytokine-cytokine receptor interaction, calcium signaling pathway, and glycine, serine, and threonine metabolism, to name a few. Finally, FN1, MSLN, PLAU, and VCAN were selected as hub genes. High expression of FN1, MSLN, PLAU, and VCAN in PC significantly correlated with poor prognosis. Integrated transcriptomic analysis was used to provide new insights into PC pathogenesis. FN1, MSLN, PLAU, and VCAN may be considered as novel biomarkers of PC.

摘要

尽管科学技术不断进步,胰腺癌(PC)的预后仍然不佳。探索新的基因对于改善当前的治疗措施至关重要。本研究旨在选择可以作为候选治疗靶基因和 PC 预后生物标志物的关键基因。从 GEO 数据库中提取了数据集 GSE101448、GSE15471 和 GSE62452 的基因表达谱。使用“limma”包在每个数据集的 PC 和正常组织样本之间选择差异表达基因(DEGs)。使用稳健秩聚合(RRA)算法整合多个表达谱并识别稳健的 DEGs。进行 GO 分析和 KEGG 分析以识别 DEGs 的功能相关性。使用 CIBERSORT 算法估计每个组织样本的免疫细胞组成。使用 STRING 和 Cytoscape 建立蛋白质-蛋白质相互作用(PPI)网络。使用 Cytoscape 中的 cytoHubba 插件识别关键基因。使用 TCGA 数据库中的临床信息进行基于关键基因表达的生存分析。确定了 566 个稳健的 DEGs(338 个上调基因和 226 个下调基因)。肿瘤组织中静止树突状细胞和肿瘤相关巨噬细胞(TAM)的浸润水平较高,包括 M0、M1 和 M2 巨噬细胞,而正常组织中 B 记忆细胞、浆细胞、T 细胞 CD8、滤泡辅助 T 细胞和 NK 细胞的浸润水平相对较高。GO 术语和 KEGG 通路分析结果表明,与肿瘤相关的通路富集,包括细胞外基质组织、细胞-基质粘附、细胞因子-细胞因子受体相互作用、钙信号通路、甘氨酸、丝氨酸和苏氨酸代谢等。最后,选择 FN1、MSLN、PLAU 和 VCAN 作为关键基因。PC 中 FN1、MSLN、PLAU 和 VCAN 的高表达与预后不良显著相关。综合转录组分析为 PC 发病机制提供了新的见解。FN1、MSLN、PLAU 和 VCAN 可能被视为 PC 的新型生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c126/9428685/61bcc1386c0d/DM2022-3839480.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验