Suppr超能文献

基于球面误差补偿的振动信号分析

Vibration Signal Analysis Based on Spherical Error Compensation.

作者信息

Wei Shan

机构信息

Industry Design Department, Xin Xiang Universtiy, Xinxiang, China.

出版信息

Front Bioeng Biotechnol. 2022 Aug 19;10:950580. doi: 10.3389/fbioe.2022.950580. eCollection 2022.

Abstract

A vibrating screen is important equipment in industrial production. According to the principle of bionics, a vibrating screen can be divided into a linear vibrating screen, elliptical vibrating screen, ball vibrating screen, and banana vibrating screen. There are also great problems with the use of a vibrating screen. The vibrating screen works due to the vibration excitation force generated by vibration. This work studies the motion trajectory of a vibrating screen by taking the vibrating screen with line motion trajectory as the research object. In this study, the vibration information is detected by an intelligent sensor, and the signal is filtered by an intelligent algorithm. Then, the spherical error compensation is used to improve the calculation accuracy, and the least square method is used to evaluate the error. Finally, the accurate vibration trajectory of the vibrating screen is obtained. The acquisition of a vibration track can provide the working efficiency and safety performance of the vibrating screen, and has social and economic benefits.

摘要

振动筛是工业生产中的重要设备。根据仿生学原理,振动筛可分为直线振动筛、椭圆振动筛、圆振动筛和香蕉振动筛。振动筛的使用也存在很大问题。振动筛通过振动产生的激振力工作。本研究以直线运动轨迹的振动筛为研究对象,研究振动筛的运动轨迹。在本研究中,通过智能传感器检测振动信息,并采用智能算法对信号进行滤波。然后,采用球面误差补偿提高计算精度,并用最小二乘法评估误差。最终得到振动筛准确的振动轨迹。振动轨迹的获取可以提高振动筛的工作效率和安全性能,具有社会效益和经济效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b16/9438900/3724e9a70405/fbioe-10-950580-g001.jpg

相似文献

1
Vibration Signal Analysis Based on Spherical Error Compensation.
Front Bioeng Biotechnol. 2022 Aug 19;10:950580. doi: 10.3389/fbioe.2022.950580. eCollection 2022.
2
Trajectory Control for Vibrating Screen with Magnetorheological Dampers.
Sensors (Basel). 2022 Jun 1;22(11):4225. doi: 10.3390/s22114225.
3
Controlled synchronization of a vibrating screen driven by two motors based on improved sliding mode controlling method.
PLoS One. 2023 Nov 21;18(11):e0294726. doi: 10.1371/journal.pone.0294726. eCollection 2023.
4
Research on the screening mechanisms of composite vibrating screens based on discrete elements.
PLoS One. 2023 Oct 19;18(10):e0293205. doi: 10.1371/journal.pone.0293205. eCollection 2023.
5
Displacement of mining vibrating screen obtained from acceleration based on improved S-G filter.
Sci Rep. 2024 Feb 7;14(1):3171. doi: 10.1038/s41598-024-53823-5.
6
Compound Control of Trajectory Errors in a Non-Resonant Piezo-Actuated Elliptical Vibration Cutting Device.
Micromachines (Basel). 2023 Oct 21;14(10):1961. doi: 10.3390/mi14101961.
7
Fatigue life prediction of cracked cross beam of mining linear vibrating screen under cyclic load.
Sci Rep. 2024 Aug 23;14(1):19631. doi: 10.1038/s41598-024-70671-5.
8
Harmonic pulsed excitation and motion detection of a vibrating reflective target.
J Acoust Soc Am. 2008 Jan;123(1):519-33. doi: 10.1121/1.2805666.
9
Harmonic motion detection in a vibrating scattering medium.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Sep;55(9):1956-74. doi: 10.1109/TUFFC.887.

引用本文的文献

1
Fatigue life prediction of cracked cross beam of mining linear vibrating screen under cyclic load.
Sci Rep. 2024 Aug 23;14(1):19631. doi: 10.1038/s41598-024-70671-5.

本文引用的文献

1
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network.
Front Bioeng Biotechnol. 2022 Aug 16;10:861286. doi: 10.3389/fbioe.2022.861286. eCollection 2022.
2
A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
Front Bioeng Biotechnol. 2022 May 19;10:832829. doi: 10.3389/fbioe.2022.832829. eCollection 2022.
3
Low-Illumination Image Enhancement Algorithm Based on Improved Multi-Scale Retinex and ABC Algorithm Optimization.
Front Bioeng Biotechnol. 2022 Apr 11;10:865820. doi: 10.3389/fbioe.2022.865820. eCollection 2022.
4
Attitude Stabilization Control of Autonomous Underwater Vehicle Based on Decoupling Algorithm and PSO-ADRC.
Front Bioeng Biotechnol. 2022 Feb 28;10:843020. doi: 10.3389/fbioe.2022.843020. eCollection 2022.
5
Self-Tuning Control of Manipulator Positioning Based on Fuzzy PID and PSO Algorithm.
Front Bioeng Biotechnol. 2022 Feb 11;9:817723. doi: 10.3389/fbioe.2021.817723. eCollection 2021.
6
Genetic Algorithm-Based Trajectory Optimization for Digital Twin Robots.
Front Bioeng Biotechnol. 2022 Jan 10;9:793782. doi: 10.3389/fbioe.2021.793782. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验