Suppr超能文献

刻画低频波动的动态幅度及其与动态功能连接的关系:在精神分裂症中的应用。

Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: An application to schizophrenia.

机构信息

The Mind Research Network, Albuquerque, NM, USA; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.

Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.

出版信息

Neuroimage. 2018 Oct 15;180(Pt B):619-631. doi: 10.1016/j.neuroimage.2017.09.035. Epub 2017 Sep 20.

Abstract

The human brain is a highly dynamic system with non-stationary neural activity and rapidly-changing neural interaction. Resting-state dynamic functional connectivity (dFC) has been widely studied during recent years, and the emerging aberrant dFC patterns have been identified as important features of many mental disorders such as schizophrenia (SZ). However, only focusing on the time-varying patterns in FC is not enough, since the local neural activity itself (in contrast to the inter-connectivity) is also found to be highly fluctuating from research using high-temporal-resolution imaging techniques. Exploring the time-varying patterns in brain activity and their relationships with time-varying brain connectivity is important for advancing our understanding of the co-evolutionary property of brain network and the underlying mechanism of brain dynamics. In this study, we introduced a framework for characterizing time-varying brain activity and exploring its associations with time-varying brain connectivity, and applied this framework to a resting-state fMRI dataset including 151 SZ patients and 163 age- and gender matched healthy controls (HCs). In this framework, 48 brain regions were first identified as intrinsic connectivity networks (ICNs) using group independent component analysis (GICA). A sliding window approach was then adopted for the estimation of dynamic amplitude of low-frequency fluctuation (dALFF) and dFC, which were used to measure time-varying brain activity and time-varying brain connectivity respectively. The dALFF was further clustered into six reoccurring states by the k-means clustering method and the group difference in occurrences of dALFF states was explored. Lastly, correlation coefficients between dALFF and dFC were calculated and the group difference in these dALFF-dFC correlations was explored. Our results suggested that 1) ALFF of brain regions was highly fluctuating during the resting-state and such dynamic patterns are altered in SZ, 2) dALFF and dFC were correlated in time and their correlations are altered in SZ. The overall results support and expand prior work on abnormalities of brain activity, static FC (sFC) and dFC in SZ, and provide new evidence on aberrant time-varying brain activity and its associations with brain connectivity in SZ, which might underscore the disrupted brain cognitive functions in this mental disorder.

摘要

人脑是一个具有非平稳神经活动和快速变化的神经相互作用的高度动态系统。近年来,静息态动态功能连接(dFC)已被广泛研究,新兴的异常 dFC 模式已被确定为许多精神障碍(如精神分裂症(SZ))的重要特征。然而,仅关注 FC 中的时变模式是不够的,因为使用高时间分辨率成像技术的研究发现,局部神经活动本身(与相互连接相反)也高度波动。探索大脑活动的时变模式及其与时变脑连接的关系,对于深入了解脑网络的协同进化特性和脑动力学的潜在机制至关重要。在这项研究中,我们引入了一个用于描述时变脑活动并探索其与时变脑连接关系的框架,并将该框架应用于包括 151 名 SZ 患者和 163 名年龄和性别匹配的健康对照(HCs)的静息态 fMRI 数据集。在该框架中,首先使用组独立成分分析(GICA)将 48 个脑区识别为内在连接网络(ICNs)。然后采用滑动窗口方法估计低频波动(dALFF)和 dFC 的动态幅度,分别用于测量时变脑活动和时变脑连接。然后通过 k-均值聚类方法将 dALFF 进一步聚类为六个重复状态,并探讨了 dALFF 状态发生的组间差异。最后,计算了 dALFF 和 dFC 之间的相关系数,并探讨了这些 dALFF-dFC 相关性的组间差异。我们的结果表明:1)在静息状态下,大脑区域的 ALFF 波动很大,而这种动态模式在 SZ 中发生了改变;2)dALFF 和 dFC 在时间上是相关的,它们的相关性在 SZ 中发生了改变。总的来说,这些结果支持并扩展了之前关于 SZ 中脑活动、静态 FC(sFC)和 dFC 异常的工作,并提供了 SZ 中异常时变脑活动及其与脑连接关系的新证据,这可能突显了这种精神障碍中大脑认知功能的紊乱。

相似文献

2
Aberrant Dynamic Functional Connectivity of Default Mode Network in Schizophrenia and Links to Symptom Severity.
Front Neural Circuits. 2021 Mar 18;15:649417. doi: 10.3389/fncir.2021.649417. eCollection 2021.
4
Altered dynamic brain activity and functional connectivity in thyroid-associated ophthalmopathy.
Hum Brain Mapp. 2023 Nov;44(16):5346-5356. doi: 10.1002/hbm.26437. Epub 2023 Jul 29.
5
Test-retest reliability of dynamic functional connectivity in resting state fMRI.
Neuroimage. 2018 Dec;183:907-918. doi: 10.1016/j.neuroimage.2018.08.021. Epub 2018 Aug 16.
6
Abnormal dynamic brain activity and functional connectivity of primary motor cortex in blepharospasm.
Eur J Neurol. 2022 Apr;29(4):1035-1043. doi: 10.1111/ene.15233. Epub 2022 Jan 6.
7
Distinct dynamic functional connectivity patterns of pain and touch thresholds: A resting-state fMRI study.
Behav Brain Res. 2019 Dec 16;375:112142. doi: 10.1016/j.bbr.2019.112142. Epub 2019 Aug 5.
8
Impact of global signal regression on characterizing dynamic functional connectivity and brain states.
Neuroimage. 2018 Jun;173:127-145. doi: 10.1016/j.neuroimage.2018.02.036. Epub 2018 Feb 21.
9
Test-retest reliability of dynamic functional connectivity in naturalistic paradigm functional magnetic resonance imaging.
Hum Brain Mapp. 2022 Mar;43(4):1463-1476. doi: 10.1002/hbm.25736. Epub 2021 Dec 6.
10
Dynamic functional connectivity in schizophrenia and autism spectrum disorder: Convergence, divergence and classification.
Neuroimage Clin. 2019;24:101966. doi: 10.1016/j.nicl.2019.101966. Epub 2019 Aug 1.

引用本文的文献

4
Comparative study of brain activity and functional connectivity in blepharospasm and blepharospasm-oromandibular dystonia.
Front Neurol. 2025 Jul 3;16:1583297. doi: 10.3389/fneur.2025.1583297. eCollection 2025.
6
Early identification of autism spectrum disorder in preschoolers by static and dynamic amplitude of low-frequency fluctuations features.
Front Hum Neurosci. 2025 Apr 10;19:1513200. doi: 10.3389/fnhum.2025.1513200. eCollection 2025.
7
Mirror therapy reduces excessive variability of motor network in stroke patients: a randomized controlled trial.
Eur J Phys Rehabil Med. 2025 Apr;61(2):184-194. doi: 10.23736/S1973-9087.25.08844-6. Epub 2025 Apr 17.
10
Advances in the fMRI analysis of the default mode network: a review.
Brain Struct Funct. 2024 Dec 30;230(1):22. doi: 10.1007/s00429-024-02888-z.

本文引用的文献

1
Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum.
Neuroimage Clin. 2017 May 27;15:513-524. doi: 10.1016/j.nicl.2017.05.024. eCollection 2017.
2
EEG Signatures of Dynamic Functional Network Connectivity States.
Brain Topogr. 2018 Jan;31(1):101-116. doi: 10.1007/s10548-017-0546-2. Epub 2017 Feb 22.
3
Dynamic functional connectivity of neurocognitive networks in children.
Hum Brain Mapp. 2017 Jan;38(1):97-108. doi: 10.1002/hbm.23346. Epub 2016 Aug 18.
4
Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity.
Neuroimage. 2016 Jul 1;134:645-657. doi: 10.1016/j.neuroimage.2016.04.051. Epub 2016 Apr 23.
5
Task-related functional connectivity dynamics in a block-designed visual experiment.
Front Hum Neurosci. 2015 Sep 30;9:543. doi: 10.3389/fnhum.2015.00543. eCollection 2015.
6
It's a matter of time: Reframing the development of cognitive control as a modification of the brain's temporal dynamics.
Dev Cogn Neurosci. 2016 Apr;18:70-77. doi: 10.1016/j.dcn.2015.08.006. Epub 2015 Sep 13.
7
Tracking the Brain's Functional Coupling Dynamics over Development.
J Neurosci. 2015 Apr 29;35(17):6849-59. doi: 10.1523/JNEUROSCI.4638-14.2015.
8
Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia.
Neuroimage. 2015 Feb 15;107:345-355. doi: 10.1016/j.neuroimage.2014.12.020. Epub 2014 Dec 13.
10
The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery.
Neuron. 2014 Oct 22;84(2):262-74. doi: 10.1016/j.neuron.2014.10.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验