Marquis Edoardo, Cutini Michele, Anasori Babak, Rosenkranz Andreas, Righi Maria Clelia
Department of Physics and Astronomy, Alma Mater Studiorum - University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy.
Department of Mechanical and Energy Engineering, and Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.
ACS Appl Nano Mater. 2022 Aug 26;5(8):10516-10527. doi: 10.1021/acsanm.2c01847. Epub 2022 Aug 8.
Understanding the interlayer interaction at the nanoscale in two-dimensional (2D) transition metal carbides and nitrides (MXenes) is important to improve their exfoliation/delamination process and application in (nano)-tribology. The layer-substrate interaction is also essential in (nano)-tribology as effective solid lubricants should be resistant against peeling-off during rubbing. Previous computational studies considered MXenes' interlayer coupling with oversimplified, homogeneous terminations while neglecting the interaction with underlying substrates. In our study, Ti-based MXenes with both homogeneous and mixed terminations are modeled using density functional theory (DFT). An ad hoc modified dispersion correction scheme is used, capable of reproducing the results obtained from a higher level of theory. The nature of the interlayer interactions, comprising van der Waals, dipole-dipole, and hydrogen bonding, is discussed along with the effects of MXene sheet's thickness and C/N ratio. Our results demonstrate that terminations play a major role in regulating MXenes' interlayer and substrate adhesion to iron and iron oxide and, therefore, lubrication, which is also affected by an external load. Using graphene and MoS as established references, we verify that MXenes' tribological performance as solid lubricants can be significantly improved by avoiding -OH and -F terminations, which can be done by controlling terminations via post-synthesis processing.
了解二维(2D)过渡金属碳化物和氮化物(MXenes)在纳米尺度上的层间相互作用对于改进其剥离/分层过程以及在(纳米)摩擦学中的应用至关重要。层与基底之间的相互作用在(纳米)摩擦学中也至关重要,因为有效的固体润滑剂在摩擦过程中应能抵抗剥落。先前的计算研究在考虑MXenes的层间耦合时采用了过于简化的均匀终止方式,而忽略了与下层基底的相互作用。在我们的研究中,使用密度泛函理论(DFT)对具有均匀和混合终止的钛基MXenes进行建模。采用了一种特殊的改进色散校正方案,该方案能够重现从更高理论水平获得的结果。讨论了包括范德华力、偶极 - 偶极相互作用和氢键在内的层间相互作用的性质,以及MXene片层厚度和C/N比的影响。我们的结果表明,终止在调节MXenes与铁和氧化铁的层间及基底附着力进而影响润滑方面起着主要作用,而这也受到外部载荷的影响。以石墨烯和MoS作为已确立的参考,我们验证了通过避免 -OH和 -F终止(这可通过合成后处理来控制终止实现),MXenes作为固体润滑剂的摩擦学性能可得到显著改善。