Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008 Jiangsu, China.
Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China.
Oxid Med Cell Longev. 2022 Aug 25;2022:9148257. doi: 10.1155/2022/9148257. eCollection 2022.
Neuronal apoptosis after subarachnoid hemorrhage (SAH) is believed to play an important role in early brain injury after SAH. The energy metabolism of neuron is closely related to its survival. The transient hyperglycemia caused by insulin resistance (IR) after SAH seriously affects the prognosis of patients. However, the specific mechanisms of IR after SAH are still not clear. Studies have shown that -KG takes part in the regulation of IR and cell apoptosis. In this study, we aim to investigate whether -KG can reduce IR after SAH, improve the disorder of neuronal glucose metabolism, alleviate neuronal apoptosis, and ultimately play a neuroprotective role in SAH-induced EBI. We first measured -KG levels in the cerebrospinal fluid (CSF) of patients with SAH. Then, we established a SAH model through hemoglobin (Hb) stimulation with HT22 cells for further mechanism research. Furthermore, an in vivo SAH model in mice was established by endovascular perforation. Our results showed that -KG levels in CSF significantly increased in SAH patients and could be used as a potential prognostic biomarker. In in vitro model of SAH, we found that -KG not only inhibited IR-induced reduction of glucose uptake in neurons after SAH but also alleviated SAH-induced neuronal apoptosis. Mechanistically, we found that -KG inhibits neuronal IR by inhibiting S6K1 activation after SAH. Moreover, neuronal apoptosis significantly increased when glucose uptake was reduced. Furthermore, our results demonstrated that -KG could also alleviate neuronal apoptosis in vivo SAH model. In conclusion, our study suggests that -KG alleviates apoptosis by inhibiting IR induced by S6K1 activation after SAH.
蛛网膜下腔出血 (SAH) 后神经元凋亡被认为在 SAH 后早期脑损伤中起重要作用。神经元的能量代谢与其存活密切相关。SAH 后胰岛素抵抗 (IR) 引起的短暂高血糖严重影响患者的预后。然而,SAH 后 IR 的具体机制仍不清楚。研究表明,-KG 参与了 IR 和细胞凋亡的调节。在本研究中,我们旨在研究 -KG 是否可以减轻 SAH 后的 IR,改善神经元葡萄糖代谢紊乱,减轻神经元凋亡,最终在 SAH 诱导的 EBI 中发挥神经保护作用。我们首先测量了 SAH 患者脑脊液 (CSF) 中的 -KG 水平。然后,我们通过血红蛋白 (Hb) 刺激 HT22 细胞建立了一个 SAH 模型,以进行进一步的机制研究。此外,通过血管内穿孔在小鼠体内建立了一个 SAH 模型。我们的结果表明,SAH 患者 CSF 中的 -KG 水平显著升高,可作为潜在的预后生物标志物。在 SAH 的体外模型中,我们发现 -KG 不仅抑制了 SAH 后神经元中 IR 诱导的葡萄糖摄取减少,而且还减轻了 SAH 诱导的神经元凋亡。在机制上,我们发现 -KG 通过抑制 S6K1 激活来抑制 SAH 后神经元的 IR。此外,当葡萄糖摄取减少时,神经元凋亡明显增加。此外,我们的结果表明,-KG 还可以减轻体内 SAH 模型中的神经元凋亡。总之,我们的研究表明,-KG 通过抑制 S6K1 激活引起的 IR 来减轻凋亡。