Suppr超能文献

机器学习支持的肾移植初级病变与临床数据的解读。

Machine learning-supported interpretation of kidney graft elementary lesions in combination with clinical data.

机构信息

Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France.

Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France.

出版信息

Am J Transplant. 2022 Dec;22(12):2821-2833. doi: 10.1111/ajt.17192. Epub 2022 Sep 20.

Abstract

Interpretation of kidney graft biopsies using the Banff classification is still heterogeneous. In this study, extreme gradient boosting classifiers learned from two large training datasets (n = 631 and 304 cases) where the "reference diagnoses" were not strictly defined following the Banff rules but from central reading by expert pathologists and further interpreted consensually by experienced transplant nephrologists, in light of the clinical context. In three external validation datasets (n = 3744, 589, and 360), the classifiers yielded a mean ROC curve AUC (95%CI) of: 0.97 (0.92-1.00), 0.97 (0.96-0.97), and 0.95 (0.93-0.97) for antibody-mediated rejection (ABMR); 0.94 (0.91-0.96), 0.94 (0.92-0.95), and 0.91 (0.88-0.95) for T cell-mediated rejection; >0.96 (0.90-1.00) with all three for interstitial fibrosis-tubular atrophy. We also developed a classifier to discriminate active and chronic active ABMR with 95% accuracy. In conclusion, we built highly sensitive and specific artificial intelligence classifiers able to interpret kidney graft scoring together with a few clinical data and automatically diagnose rejection, with excellent concordance with the Banff rules and reference diagnoses made by a group of experts. Some discrepancies may point toward possible improvements that could be made to the Banff classification.

摘要

使用 Banff 分类对肾移植活检进行解读仍然存在异质性。在这项研究中,极端梯度提升分类器从两个大型训练数据集(n=631 例和 304 例)中学习,其中“参考诊断”并未严格按照 Banff 规则定义,而是由专家病理学家进行中央解读,并根据临床背景由经验丰富的移植肾病学家进行共识解读。在三个外部验证数据集(n=3744 例、589 例和 360 例)中,分类器的平均 ROC 曲线 AUC(95%CI)分别为:0.97(0.92-1.00)、0.97(0.96-0.97)和 0.95(0.93-0.97)用于抗体介导的排斥反应(ABMR);0.94(0.91-0.96)、0.94(0.92-0.95)和 0.91(0.88-0.95)用于 T 细胞介导的排斥反应;0.96(0.90-1.00)的所有三个数据点都用于间质纤维化-肾小管萎缩。我们还开发了一种分类器,可将急性和慢性活动性 ABMR 以 95%的准确率进行区分。总之,我们构建了高度敏感和特异性的人工智能分类器,能够解释肾移植评分以及一些临床数据,并自动诊断排斥反应,与 Banff 规则和专家组做出的参考诊断具有极好的一致性。一些差异可能表明 Banff 分类可能需要改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验