Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
Stat Med. 2022 Nov 20;41(26):5290-5304. doi: 10.1002/sim.9569. Epub 2022 Sep 5.
In comparative effectiveness research (CER), leveraging short-term surrogates to infer treatment effects on long-term outcomes can guide policymakers evaluating new treatments. Numerous statistical procedures for identifying surrogates have been proposed for randomized clinical trials (RCTs), but no methods currently exist to evaluate the proportion of treatment effect (PTE) explained by surrogates in real-world data (RWD), which have become increasingly common. To address this knowledge gap, we propose inverse probability weighted (IPW) and doubly robust (DR) estimators of an optimal transformation of the surrogate and the corresponding PTE measure. We demonstrate that the proposed estimators are consistent and asymptotically normal, and the DR estimator is consistent when either the propensity score model or outcome regression model is correctly specified. Our proposed estimators are evaluated through extensive simulation studies. In two RWD settings, we show that our method can identify and validate surrogate markers for inflammatory bowel disease (IBD).
在比较效果研究(CER)中,利用短期替代指标来推断治疗对长期结果的影响,可以为评估新治疗方法的政策制定者提供指导。已经提出了许多用于随机临床试验(RCT)的识别替代指标的统计方法,但目前还没有方法来评估替代指标在真实世界数据(RWD)中解释的治疗效果比例(PTE),而 RWD 已经变得越来越普遍。为了解决这一知识空白,我们提出了一种最优替代指标转换的逆概率加权(IPW)和双重稳健(DR)估计器,以及相应的 PTE 度量。我们证明了所提出的估计器是一致的,并且是渐近正态的,并且当倾向评分模型或结果回归模型正确指定时,DR 估计器也是一致的。我们通过广泛的模拟研究来评估我们的估计器。在两个 RWD 环境中,我们表明我们的方法可以识别和验证炎症性肠病(IBD)的替代标志物。