Cai Lijun, Yue Guanyu, Chen Yifan, Wang Li, Yao Xiaojun, Zou Quan, Fu Xiangzheng, Cao Dongsheng
College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China.
Degree Programs in Systems and Information Engineering, Graduate School of Science and Technology Doctoral Program in Computer Science, University of Tsukuba, Tsukuba, Japan.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae654.
Accurately predicting the degradation capabilities of proteolysis-targeting chimeras (PROTACs) for given target proteins and E3 ligases is important for PROTAC design. The distinctive ternary structure of PROTACs presents a challenge to traditional drug-target interaction prediction methods, necessitating more innovative approaches. While current state-of-the-art (SOTA) methods using graph neural networks (GNNs) can discern the molecular structure of PROTACs and proteins, thus enabling the efficient prediction of PROTACs' degradation capabilities, they rely heavily on limited crystal structure data of the POI-PROTAC-E3 ternary complex. This reliance underutilizes rich PROTAC experimental data and neglects intricate interaction relationships within ternary complexes.
In this study, we propose a model based on cross-modal strategy and ternary attention technology, ET-PROTACs, to predict the targeted degradation capabilities of PROTACs. Our model capitalizes on the strengths of cross-modal methods by using equivariant GNN graph neural networks to process the graph structure and spatial coordinates of PROTAC molecules concurrently while utilizing sequence-based methods to learn the protein sequence information. This integration of cross-modal information is cohesively harnessed and channeled into a ternary attention mechanism, specially tailored for the unique structure of PROTACs, enabling the congruent modeling of both PROTAC and protein modalities. Experimental results demonstrate that the ET-PROTACs model outperforms existing SOTA methods. Moreover, visualizing attention scores illuminates crucial residues and atoms pivotal in specific POI-PROTAC-E3 interactions, thus offering invaluable insights and guidance for future pharmaceutical research.
The codes of our model are available at https://github.com/GuanyuYue/ET-PROTACs.
准确预测靶向蛋白降解嵌合体(PROTAC)对给定靶蛋白和E3连接酶的降解能力对于PROTAC设计至关重要。PROTAC独特的三元结构对传统的药物-靶点相互作用预测方法提出了挑战,需要更具创新性的方法。虽然目前使用图神经网络(GNN)的最先进(SOTA)方法能够识别PROTAC和蛋白质的分子结构,从而实现对PROTAC降解能力的有效预测,但它们严重依赖于有限的感兴趣蛋白(POI)-PROTAC-E3三元复合物晶体结构数据。这种依赖没有充分利用丰富的PROTAC实验数据,并且忽略了三元复合物内部复杂的相互作用关系。
在本研究中,我们提出了一种基于跨模态策略和三元注意力技术的模型ET-PROTACs,用于预测PROTAC的靶向降解能力。我们的模型利用等变GNN图神经网络处理PROTAC分子的图结构和空间坐标,同时利用基于序列的方法学习蛋白质序列信息,从而发挥跨模态方法的优势。这种跨模态信息的整合被紧密利用并引入到专门为PROTAC独特结构量身定制的三元注意力机制中,从而能够对PROTAC和蛋白质模态进行一致的建模。实验结果表明,ET-PROTACs模型优于现有的SOTA方法。此外,可视化注意力分数揭示了特定POI-PROTAC-E3相互作用中关键的残基和原子,从而为未来的药物研究提供了宝贵的见解和指导。