UCL Queen Square Institute of Neurology, University College London, London, UK.
BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
Nat Protoc. 2022 Dec;17(12):3056-3079. doi: 10.1038/s41596-022-00732-4. Epub 2022 Sep 5.
Population behavior of signaling molecules on the cell surface is key to their adaptive function. Live imaging of proteins tagged with fluorescent molecules has been an essential tool in understanding this behavior. Typically, genetic or chemical tags are used to target molecules present throughout the cell, whereas antibody-based tags label the externally exposed molecular domains only. Both approaches could potentially overlook the intricate process of in-out membrane recycling in which target molecules appear or disappear on the cell surface. This limitation is overcome by using a pH-sensitive fluorescent tag, such as Super-Ecliptic pHluorin (SEP), because its emission depends on whether it resides inside or outside the cell. Here we focus on the main glial glutamate transporter GLT1 and describe a genetic design that equips GLT1 molecules with SEP without interfering with the transporter's main function. Expressing GLT1-SEP in astroglia in cultures or in hippocampal slices enables monitoring of the real-time dynamics of the cell-surface and cytosolic fractions of the transporter in living cells. Whole-cell fluorescence recovery after photobleaching and quantitative image-kinetic analysis of the resulting time-lapse images enables assessment of the rate of GLT1-SEP recycling on the cell surface, a fundamental trafficking parameter unattainable previously. The present protocol takes 15-20 d to set up cell preparations, and 2-3 d to carry out live cell experiments and data analyses. The protocol can be adapted to study different membrane molecules of interest, particularly those proteins whose lifetime on the cell surface is critical to their adaptive function.
细胞表面信号分子的群体行为是其适应功能的关键。标记有荧光分子的蛋白质的实时成像一直是理解这种行为的重要工具。通常,遗传或化学标记用于靶向整个细胞中存在的分子,而基于抗体的标记仅标记外部暴露的分子结构域。这两种方法都可能忽略了目标分子在细胞膜内外进行的复杂的内吞/出膜循环过程。通过使用 pH 敏感的荧光标记物(如 Super-Ecliptic pHluorin,SEP)可以克服这一限制,因为其发射取决于它是位于细胞内还是细胞外。本文重点介绍主要的神经胶质谷氨酸转运体 GLT1,并描述了一种遗传设计,该设计使 GLT1 分子与 SEP 结合,而不干扰转运体的主要功能。在培养的星形胶质细胞或海马切片中表达 GLT1-SEP,可实时监测转运体在活细胞中细胞表面和胞质部分的动态变化。光漂白后的全细胞荧光恢复和对所得延时图像的定量图像动力学分析,可评估 GLT1-SEP 在细胞表面的回收速率,这是以前无法获得的基本运输参数。该方案需要 15-20 天建立细胞准备,2-3 天进行活细胞实验和数据分析。该方案可以适应研究不同感兴趣的膜分子,特别是那些其在细胞表面的寿命对其适应功能至关重要的蛋白质。