Suppr超能文献

SARS-CoV-2 的免疫学与免疫疗法:用于疫苗开发的免疫原性表位鉴定。

Immunology to Immunotherapeutics of SARS-CoV-2: Identification of Immunogenic Epitopes for Vaccine Development.

机构信息

Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box No. 4911, New Delhi, 110029, India.

Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.

出版信息

Curr Microbiol. 2022 Sep 5;79(10):306. doi: 10.1007/s00284-022-03003-3.

Abstract

The emergence of COVID19 pandemic caused by SARS-CoV-2 virus has created a global public health and socio-economic crisis. Immunoinformatics-based approaches to investigate the potential antigens is the fastest way to move towards a multiepitope-based vaccine development. This review encompasses the underlying mechanisms of pathogenesis, innate and adaptive immune signaling along with evasion pathways of SARS-CoV-2. Furthermore, it compiles the promiscuous peptides from in silico studies which are subjected to prediction of cytokine milieu using web-based servers. Out of the 434 peptides retrieved from all studies, we have identified 33 most promising T cell vaccine candidates. This review presents a list of the most potential epitopes from several proteins of the virus based on their immunogenicity, homology, conservancy and population coverage studies. These epitopes can form a basis of second generation of vaccine development as the first generation vaccines in various stages of trials mostly focus only on Spike protein. We therefore, propose them as most potential candidates which can be taken up immediately for confirmation by experimental studies.

摘要

由 SARS-CoV-2 病毒引起的 COVID19 大流行的出现,造成了全球性的公共卫生和社会经济危机。基于免疫信息学的方法来研究潜在抗原是迈向基于多表位疫苗开发的最快途径。这篇综述包括了 SARS-CoV-2 的发病机制、先天和适应性免疫信号以及逃逸途径的潜在机制。此外,它还汇集了来自计算机研究的混杂肽,这些肽使用基于网络的服务器进行细胞因子环境的预测。从所有研究中检索到的 434 条肽中,我们确定了 33 个最有前途的 T 细胞疫苗候选物。本综述根据病毒几种蛋白的免疫原性、同源性、保守性和人群覆盖研究,列出了最有潜力的表位列表。这些表位可以作为第二代疫苗开发的基础,因为第一代疫苗在临床试验的各个阶段大多只关注 Spike 蛋白。因此,我们将它们作为最有潜力的候选物提出,这些候选物可以立即通过实验研究进行确认。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d987/9444117/56031538d417/284_2022_3003_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验