Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
Sci Rep. 2021 Feb 5;11(1):3238. doi: 10.1038/s41598-021-81749-9.
The rampant spread of COVID-19, an infectious disease caused by SARS-CoV-2, all over the world has led to over millions of deaths, and devastated the social, financial and political entities around the world. Without an existing effective medical therapy, vaccines are urgently needed to avoid the spread of this disease. In this study, we propose an in silico deep learning approach for prediction and design of a multi-epitope vaccine (DeepVacPred). By combining the in silico immunoinformatics and deep neural network strategies, the DeepVacPred computational framework directly predicts 26 potential vaccine subunits from the available SARS-CoV-2 spike protein sequence. We further use in silico methods to investigate the linear B-cell epitopes, Cytotoxic T Lymphocytes (CTL) epitopes, Helper T Lymphocytes (HTL) epitopes in the 26 subunit candidates and identify the best 11 of them to construct a multi-epitope vaccine for SARS-CoV-2 virus. The human population coverage, antigenicity, allergenicity, toxicity, physicochemical properties and secondary structure of the designed vaccine are evaluated via state-of-the-art bioinformatic approaches, showing good quality of the designed vaccine. The 3D structure of the designed vaccine is predicted, refined and validated by in silico tools. Finally, we optimize and insert the codon sequence into a plasmid to ensure the cloning and expression efficiency. In conclusion, this proposed artificial intelligence (AI) based vaccine discovery framework accelerates the vaccine design process and constructs a 694aa multi-epitope vaccine containing 16 B-cell epitopes, 82 CTL epitopes and 89 HTL epitopes, which is promising to fight the SARS-CoV-2 viral infection and can be further evaluated in clinical studies. Moreover, we trace the RNA mutations of the SARS-CoV-2 and ensure that the designed vaccine can tackle the recent RNA mutations of the virus.
新型冠状病毒(SARS-CoV-2)引发的 COVID-19 传染病在全球范围内肆虐,导致数百万人死亡,摧毁了世界各地的社会、金融和政治实体。由于目前尚无有效的医疗方法,急需疫苗来避免这种疾病的传播。在本研究中,我们提出了一种基于深度学习的计算方法来预测和设计多表位疫苗(DeepVacPred)。通过结合计算免疫信息学和深度神经网络策略,DeepVacPred 计算框架直接从现有的 SARS-CoV-2 刺突蛋白序列中预测了 26 个潜在的疫苗亚单位。我们进一步使用计算方法研究了 26 个候选亚单位中的线性 B 细胞表位、细胞毒性 T 淋巴细胞(CTL)表位和辅助性 T 淋巴细胞(HTL)表位,并从中鉴定出最好的 11 个表位来构建针对 SARS-CoV-2 病毒的多表位疫苗。通过最先进的生物信息学方法评估了设计疫苗的人群覆盖率、抗原性、过敏性、毒性、理化性质和二级结构,显示出设计疫苗的良好质量。通过计算工具预测、精修和验证设计疫苗的 3D 结构。最后,我们对其进行优化并将其密码子序列插入质粒中,以确保克隆和表达效率。总之,本研究提出的基于人工智能(AI)的疫苗发现框架加速了疫苗设计过程,并构建了一种包含 16 个 B 细胞表位、82 个 CTL 表位和 89 个 HTL 表位的 694 个氨基酸的多表位疫苗,有望对抗 SARS-CoV-2 病毒感染,并可进一步在临床研究中进行评估。此外,我们还追踪了 SARS-CoV-2 的 RNA 突变,并确保设计的疫苗能够应对病毒的近期 RNA 突变。