Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
Institute of Sports Medicine, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany.
Sci Rep. 2022 Sep 5;12(1):15070. doi: 10.1038/s41598-022-18271-z.
A seizure likelihood biomarker could improve seizure monitoring and facilitate adjustment of treatments based on seizure risk. Here, we tested differences in patient-specific 24-h-modulation patterns of electrodermal activity (EDA), peripheral body temperature (TEMP), and heart rate (HR) between patients with and without seizures. We enrolled patients who underwent continuous video-EEG monitoring at Boston Children's Hospital to wear a biosensor. We divided patients into two groups: those with no seizures and those with at least one seizure during the recording period. We assessed the 24-h modulation level and amplitude of EDA, TEMP, and HR. We performed machine learning including physiological and clinical variables. Subsequently, we determined classifier performance by cross-validated machine learning. Patients with seizures (n = 49) had lower EDA levels (p = 0.031), EDA amplitudes (p = 0.045), and trended toward lower HR levels (p = 0.060) compared to patients without seizures (n = 68). Averaged cross-validated classification accuracy was 69% (AUC-ROC: 0.75). Our results show the potential to monitor and forecast risk for epileptic seizures based on changes in 24-h patterns in wearable recordings in combination with clinical variables. Such biomarkers might be applicable to inform care, such as treatment or seizure injury risk during specific periods, scheduling diagnostic tests, such as admission to the epilepsy monitoring unit, and potentially other neurological and chronic conditions.
癫痫发作可能性的生物标志物可以改善癫痫监测,并根据癫痫风险调整治疗方法。在这里,我们测试了有和无癫痫发作的患者在特定患者的 24 小时皮肤电活动(EDA)、外周体温(TEMP)和心率(HR)调制模式上的差异。我们招募了在波士顿儿童医院接受连续视频脑电图监测的患者佩戴生物传感器。我们将患者分为两组:无癫痫发作组和记录期间至少有一次癫痫发作组。我们评估了 EDA、TEMP 和 HR 的 24 小时调制水平和幅度。我们进行了包括生理和临床变量的机器学习。随后,我们通过交叉验证机器学习确定了分类器性能。与无癫痫发作组(n = 68)相比,有癫痫发作组(n = 49)的 EDA 水平(p = 0.031)、EDA 幅度(p = 0.045)和 HR 水平(p = 0.060)较低。平均交叉验证分类准确率为 69%(AUC-ROC:0.75)。我们的研究结果表明,基于可穿戴记录中 24 小时模式的变化并结合临床变量,有监测和预测癫痫发作风险的潜力。此类生物标志物可能适用于告知护理,例如特定时期的治疗或癫痫发作损伤风险、安排诊断测试,例如癫痫监测单元入院,以及可能的其他神经和慢性疾病。