HHMI Janelia, Ashburn, VA, USA.
Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
Nat Biotechnol. 2023 Jan;41(1):44-49. doi: 10.1038/s41587-022-01427-7. Epub 2022 Sep 5.
We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing method. Our approach improves understanding of where and when cell fate decisions are made in developing embryos, tissues, and organs.
我们提出了一种自动识别和跟踪延时显微镜记录中整个胚胎发育过程中细胞核的方法。该方法结合了深度学习和全局优化。在一个小鼠数据集上,与竞争方法的 31.8%相比,该方法重构了跨越 1 小时的 75.8%细胞谱系。我们的方法提高了对胚胎、组织和器官中细胞命运决定发生的位置和时间的理解。