Suppr超能文献

用于指示胆管癌预后的炎症基因特征的生物信息学分析

Bioinformatics Analysis of Inflammation Gene Signature in Indicating Cholangiocarcinoma Prognosis.

作者信息

Wang Yanting, Chen Shi, He Song

机构信息

Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Department of Oncology, Chengdu Jinniu District People's Hospital, Chengdu, Sichuan, China.

出版信息

J Oncol. 2022 Aug 27;2022:9975838. doi: 10.1155/2022/9975838. eCollection 2022.

Abstract

AIM

We studied inflammatory response-related genes in cholangiocarcinoma by bioinformatics analysis.

METHODS

The expression profiles and clinical information of cholangiocarcinoma patients were downloaded from the TCGA cohort and the Gene Expression Omnibus. The greatest absolute shrinking and selecting operator Cox analyses were utilized to build a multigene predictive signature.

RESULTS

An inflammation response-related gene profile was generated using LASSO-Cox regression analysis of Homo sapiens bestrophin 1 (BEST1), Chemokine (C-C motif) ligand 2 (CCL2), and plasminogen activator, urokinase receptor (PLAUR). Individuals in the highest category had a significantly lower overall survival time than those from the low-risk group. A receiver operating curve analysis was used to demonstrate the predictive ability of the predictive gene signature. Through multivariate Cox analysis, the risk score was discovered to be a predictor of overall survival (OS). According to functional assessments, the immunological state and milieu of the two risk areas were significantly different. The expression levels of predictive genes were found to be strongly linked to the sensitivity of cancer cells to antitumor therapy.

CONCLUSION

A new signature made up of three respective response-relevant genes is found to be a promising indicator of prognosis by influencing the immune condition and tumor microenvironment.

摘要

目的

我们通过生物信息学分析研究胆管癌中炎症反应相关基因。

方法

从TCGA队列和基因表达综合数据库下载胆管癌患者的表达谱和临床信息。利用最大绝对值收缩与选择算子Cox分析构建多基因预测特征。

结果

通过对人Bestrophin 1(BEST1)、趋化因子(C-C基序)配体2(CCL2)和纤溶酶原激活物、尿激酶受体(PLAUR)进行LASSO-Cox回归分析,生成了炎症反应相关基因谱。高风险组个体的总生存时间显著低于低风险组。采用受试者工作特征曲线分析来证明预测基因特征的预测能力。通过多变量Cox分析,发现风险评分是总生存(OS)的预测指标。根据功能评估,两个风险区域的免疫状态和环境存在显著差异。发现预测基因的表达水平与癌细胞对抗肿瘤治疗的敏感性密切相关。

结论

发现一个由三个各自与反应相关的基因组成的新特征,通过影响免疫状况和肿瘤微环境,有望成为预后指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b04d/9440805/b111578cf740/JO2022-9975838.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验