与基于强度的技术相比,用于多模态生物医学图像配准的基于特征的新方法。
Novel feature-based method for multi-modal biomedical image registration compared to intensity-based technique.
作者信息
Shojaei Mohammad Javad, Yang Lichen, Shojaei Kazem, Doungchawee Jeerapat, Vachet Richard W
机构信息
Department of Materials, Imperial College London, London, UK.
School of Computing, Newcastle University, Newcastle upon Tyne, UK.
出版信息
Sci Rep. 2025 Aug 1;15(1):28183. doi: 10.1038/s41598-025-12862-2.
Multimodal image registration plays a crucial role in biomedical research, enabling the integration of complementary information from different imaging techniques. We present a novel feature-based approach for multimodal image registration, alongside traditional intensity-based methods. Our method, inspired by SPP-net architecture, employs multi-level feature extraction for robust image alignment. Additionally, we perform t-SNE dimensionality reduction on the MALDI-MSI dataset to enhance feature discrimination and visualization. We evaluated both approaches using datasets from the ANHIR Grand Challenge and mass spectrometry imaging modalities (LA-ICP-MS and MALDI-MSI). The proposed feature-based method achieved comparable accuracy to optimized intensity-based approaches, with Dice Coefficients of 0.95 for ANHIR samples (e.g., COAD_05) and 0.97 for mass spectrometry data, while requiring approximately 50% less computational time. Quantitative evaluation through Mutual Information metrics and Hausdorff Distance demonstrated high registration accuracy across different tissue types and imaging modalities. These results establish our feature-based approach as an efficient alternative to traditional intensity-based methods for multimodal image registration in biomedical applications.
多模态图像配准在生物医学研究中起着至关重要的作用,它能够整合来自不同成像技术的互补信息。我们提出了一种新颖的基于特征的多模态图像配准方法,以及传统的基于强度的方法。我们的方法受SPP-net架构启发,采用多级特征提取来实现稳健的图像对齐。此外,我们对基质辅助激光解吸电离质谱成像(MALDI-MSI)数据集进行t-SNE降维,以增强特征辨别和可视化。我们使用来自ANHIR大挑战的数据集以及质谱成像模态(激光烧蚀电感耦合等离子体质谱法(LA-ICP-MS)和基质辅助激光解吸电离质谱成像(MALDI-MSI))对这两种方法进行了评估。所提出的基于特征的方法与优化后的基于强度的方法具有相当的准确性,对于ANHIR样本(例如COAD_05)的骰子系数为0.95,对于质谱数据的骰子系数为0.97,同时所需的计算时间减少了约50%。通过互信息指标和豪斯多夫距离进行的定量评估表明,在不同组织类型和成像模态下配准精度都很高。这些结果表明,我们基于特征的方法是生物医学应用中多模态图像配准的传统基于强度的方法的一种有效替代方案。
相似文献
J Med Imaging (Bellingham). 2025-3
Cochrane Database Syst Rev. 2024-10-17
IEEE Trans Med Imaging. 2025-1
本文引用的文献
Phys Imaging Radiat Oncol. 2023-8-20
J Med Imaging (Bellingham). 2023-5
Mass Spectrom Rev. 2024
J Mass Spectrom Adv Clin Lab. 2021-12-18
Genome Med. 2021-9-27
Chem Rev. 2021-10-13