School of Electronics and Computer Science, University of Southampton, UK.
Institute for Life Sciences, University of Southampton, UK.
Lab Chip. 2022 Oct 11;22(20):3869-3876. doi: 10.1039/d2lc00583b.
We describe fractionation of sub-micron vesicles and particles suspended in high conductivity electrolytes using an electrokinetically biased Deterministic Lateral Displacement (DLD) device. An optimised, asymmetric array of micron-sized pillars and gaps, with an AC electric field applied orthogonal to the fluid flow gives an approximately ten-fold reduction in the intrinsic critical diameter () of the device. The asymmetry in the device maximises the throughput. Fractionation of populations of 100 nm and 400 nm extruded vesicles is achieved in 690 mS m KCl, and 100 nm, 200 nm and 500 nm polystyrene particles in 105 mS m KCl. The electrokinetically biased DLD may provide solutions for simple and rapid isolation of extracellular vesicles.
我们描述了使用电动力学偏置的确定性侧向位移(DLD)装置对悬浮在高电导率电解质中的亚微米囊泡和颗粒进行的分馏。优化的、不对称的微米级柱子和间隙阵列,外加与流体流动正交的交流电场,使器件的固有临界直径()降低了约十倍。该器件的不对称性最大化了通量。在 690 mS m KCl 中实现了 100nm 和 400nm 挤出囊泡的分馏,在 105 mS m KCl 中实现了 100nm、200nm 和 500nm 聚苯乙烯颗粒的分馏。电动力学偏置的 DLD 可能为简单快速分离细胞外囊泡提供解决方案。