Suppr超能文献

机器学习辅助清醒小鼠膀胱功能透视检查。

Machine learning-assisted fluoroscopy of bladder function in awake mice.

机构信息

Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.

Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

出版信息

Elife. 2022 Sep 6;11:e79378. doi: 10.7554/eLife.79378.

Abstract

Understanding the lower urinary tract (LUT) and development of highly needed novel therapies to treat LUT disorders depends on accurate techniques to monitor LUT (dys)function in preclinical models. We recently developed videocystometry in rodents, which combines intravesical pressure measurements with X-ray-based fluoroscopy of the LUT, allowing the in vivo analysis of the process of urine storage and voiding with unprecedented detail. Videocystometry relies on the precise contrast-based determination of the bladder volume at high temporal resolution, which can readily be achieved in anesthetized or otherwise motion-restricted mice but not in awake and freely moving animals. To overcome this limitation, we developed a machine-learning method, in which we trained a neural network to automatically detect the bladder in fluoroscopic images, allowing the automatic analysis of bladder filling and voiding cycles based on large sets of time-lapse fluoroscopic images (>3 hr at 30 images/s) from behaving mice and in a noninvasive manner. With this approach, we found that urethane, an injectable anesthetic that is commonly used in preclinical urological research, has a profound, dose-dependent effect on urethral relaxation and voiding duration. Moreover, both in awake and in anesthetized mice, the bladder capacity was decreased ~fourfold when cystometry was performed acutely after surgical implantation of a suprapubic catheter. Our findings provide a paradigm for the noninvasive, in vivo monitoring of a hollow organ in behaving animals and pinpoint important limitations of the current gold standard techniques to study the LUT in mice.

摘要

理解下尿路(LUT)及其高度需要的新型治疗方法的开发取决于准确的技术,以监测临床前模型中的 LUT(功能)障碍。我们最近在啮齿动物中开发了视频膀胱测量技术,该技术将膀胱内压力测量与 LUT 的基于 X 射线的荧光镜检查相结合,允许以前所未有的细节对尿液储存和排空过程进行体内分析。视频膀胱测量依赖于在高时间分辨率下精确的基于对比的膀胱容量确定,这在麻醉或其他运动受限的小鼠中很容易实现,但在清醒和自由活动的动物中则不行。为了克服这一限制,我们开发了一种机器学习方法,我们在其中训练神经网络自动检测荧光镜图像中的膀胱,从而可以根据来自行为小鼠的大量时间推移荧光镜图像(30 图像/秒时超过 3 小时)自动分析膀胱充盈和排空周期,并且是非侵入性的。通过这种方法,我们发现,一种常用于临床前泌尿科研究的可注射麻醉剂——氨基甲酸乙酯,对尿道松弛和排尿时间有深远的、剂量依赖性的影响。此外,在清醒和麻醉的小鼠中,当在耻骨上导管植入手术后立即进行膀胱测量时,膀胱容量减少了约四倍。我们的发现为在行为动物中对中空器官进行非侵入性、体内监测提供了范例,并指出了当前研究小鼠 LUT 的黄金标准技术的重要局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0068/9553215/1dc3a141252e/elife-79378-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验