Division of Environmental Health Sciences, School of Public Health, University of Minnesotagrid.17635.36, Saint Paul, Minnesota, USA.
Department of Food and Animal Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
Microbiol Spectr. 2022 Oct 26;10(5):e0166722. doi: 10.1128/spectrum.01667-22. Epub 2022 Sep 6.
Antibiotic tolerance not only enables bacteria to survive acute antibiotic exposures but also provides bacteria with a window of time in which to develop antibiotic resistance. The increasing prevalence of Campylobacter jejuni isolates resistant to clinically important antibiotics, particularly fluoroquinolones (FQs), is a global public health concern. Currently, little is known about antibiotic tolerance and its effects on resistance development in C. jejuni. Here, we show that exposure to ciprofloxacin or tetracycline at concentrations 10 and 100 times higher than the MIC induces antibiotic tolerance in C. jejuni, whereas gentamicin or erythromycin treatment causes cell death. Interestingly, FQ resistance rapidly develops in C. jejuni after tolerance induction by ciprofloxacin and tetracycline. Furthermore, after tolerance is induced, alkyl hydroperoxide reductase (AhpC) plays a critical role in reducing FQ resistance development by alleviating oxidative stress. Together, these results demonstrate that exposure of C. jejuni to antibiotics can induce antibiotic tolerance and that FQ-resistant (FQ) C. jejuni clones rapidly emerge after tolerance induction. This study elucidates the mechanisms underlying the high prevalence of FQ C. jejuni and provides insights into the effects of antibiotic tolerance on resistance development. Antibiotic tolerance compromises the efficacy of antibiotic treatment by extending bacterial survival and facilitating the development of mutations associated with antibiotic resistance. Despite growing public health concerns about antibiotic resistance in C. jejuni, antibiotic tolerance has not yet been investigated in this important zoonotic pathogen. Here, our results show that exposure of C. jejuni to ciprofloxacin or tetracycline leads to antibiotic tolerance development, which subsequently facilitates the emergence of FQ C. jejuni. Importantly, these antibiotics are commonly used in animal agriculture. Moreover, our study suggests that the use of non-FQ drugs in animal agriculture promotes FQ resistance development, which is crucial because antibiotic-resistant C. jejuni is primarily transmitted from animals to humans. Overall, these findings increase our understanding of the mechanisms of resistance development through the induction of antibiotic tolerance.
抗生素耐药性不仅使细菌能够在急性抗生素暴露下存活,还为其提供了一段发展抗生素耐药性的时间窗口。空肠弯曲菌对临床重要抗生素(尤其是氟喹诺酮类药物)的耐药性日益普遍,这是一个全球性的公共卫生问题。目前,人们对空肠弯曲菌的抗生素耐药性及其对耐药性发展的影响知之甚少。在这里,我们表明,环丙沙星或四环素的浓度高于 MIC10 倍和 100 倍会诱导空肠弯曲菌的抗生素耐药性,而庆大霉素或红霉素处理会导致细胞死亡。有趣的是,在环丙沙星和四环素诱导耐药性后,空肠弯曲菌的氟喹诺酮(FQ)耐药性迅速发展。此外,在诱导耐药性后,烷基氢过氧化物还原酶(AhpC)通过减轻氧化应激在降低 FQ 耐药性发展方面发挥关键作用。总之,这些结果表明,空肠弯曲菌暴露于抗生素会诱导抗生素耐药性,并且在诱导耐药性后,FQ 耐药(FQ)空肠弯曲菌克隆迅速出现。这项研究阐明了空肠弯曲菌中 FQ 高流行率的机制,并深入了解了抗生素耐药性对耐药性发展的影响。抗生素耐药性通过延长细菌存活时间并促进与抗生素耐药性相关的突变的出现,从而降低抗生素治疗的疗效。尽管人们对空肠弯曲菌的抗生素耐药性日益关注,但这种重要的人畜共患病病原体的抗生素耐药性尚未得到研究。在这里,我们的结果表明,空肠弯曲菌暴露于环丙沙星或四环素会导致抗生素耐药性的发展,随后促进 FQ 空肠弯曲菌的出现。重要的是,这些抗生素在动物农业中广泛使用。此外,我们的研究表明,在动物农业中使用非 FQ 药物会促进 FQ 耐药性的发展,这一点至关重要,因为抗生素耐药性空肠弯曲菌主要从动物传播给人类。总的来说,这些发现增加了我们对通过诱导抗生素耐药性发展来理解耐药机制的理解。