Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
PLoS Comput Biol. 2022 Sep 6;18(9):e1009767. doi: 10.1371/journal.pcbi.1009767. eCollection 2022 Sep.
Comprehensive molecular characterization of cancer subtypes is essential for predicting clinical outcomes and searching for personalized treatments. We present bnClustOmics, a statistical model and computational tool for multi-omics unsupervised clustering, which serves a dual purpose: Clustering patient samples based on a Bayesian network mixture model and learning the networks of omics variables representing these clusters. The discovered networks encode interactions among all omics variables and provide a molecular characterization of each patient subgroup. We conducted simulation studies that demonstrated the advantages of our approach compared to other clustering methods in the case where the generative model is a mixture of Bayesian networks. We applied bnClustOmics to a hepatocellular carcinoma (HCC) dataset comprising genome (mutation and copy number), transcriptome, proteome, and phosphoproteome data. We identified three main HCC subtypes together with molecular characteristics, some of which are associated with survival even when adjusting for the clinical stage. Cluster-specific networks shed light on the links between genotypes and molecular phenotypes of samples within their respective clusters and suggest targets for personalized treatments.
全面的癌症亚型分子特征分析对于预测临床结果和寻找个性化治疗方法至关重要。我们提出了 bnClustOmics,这是一种用于多组学无监督聚类的统计模型和计算工具,具有双重目的:基于贝叶斯网络混合模型对患者样本进行聚类,并学习代表这些聚类的组学变量网络。发现的网络编码了所有组学变量之间的相互作用,并为每个患者亚组提供了分子特征分析。我们进行了模拟研究,证明了在生成模型是贝叶斯网络混合物的情况下,与其他聚类方法相比,我们的方法具有优势。我们将 bnClustOmics 应用于包含基因组(突变和拷贝数)、转录组、蛋白质组和磷酸化蛋白质组数据的肝细胞癌(HCC)数据集。我们确定了三种主要的 HCC 亚型,以及分子特征,其中一些与生存相关,即使在调整临床分期后也是如此。特定于聚类的网络揭示了各自聚类中样本的基因型与分子表型之间的联系,并为个性化治疗提供了目标。