Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan.
Division for Interdisciplinary Advanced Research and Education, Tohoku University, 980-8578 Sendai, Japan.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2122032119. doi: 10.1073/pnas.2122032119. Epub 2022 Sep 6.
Photosynthetic organisms have developed a regulation mechanism called state transition (ST) to rapidly adjust the excitation balance between the two photosystems by light-harvesting complex II (LHCII) movement. Though many researchers have assumed coupling of the dynamic transformations of the thylakoid membrane with ST, evidence of that remains elusive. To clarify the above-mentioned coupling in a model organism , here we used two advanced microscope techniques, the excitation-spectral microscope (ESM) developed recently by us and the superresolution imaging based on structured-illumination microscopy (SIM). The ESM observation revealed ST-dependent spectral changes upon repeated ST inductions. Surprisingly, it clarified a less significant ST occurrence in the region surrounding the pyrenoid, which is a subcellular compartment specialized for the carbon-fixation reaction, than that in the other domains. Further, we found a species dependence of this phenomenon: 137c strain showed the significant intracellular inhomogeneity of ST occurrence, whereas 4A+ strain hardly did. On the other hand, the SIM observation resolved partially irreversible fine thylakoid transformations caused by the ST-inducing illumination. This fine, irreversible thylakoid transformation was also observed in the STT7 kinase-lacking mutant. This result revealed that the fine thylakoid transformation is not induced solely by the LHCII phosphorylation, suggesting the highly susceptible nature of the thylakoid ultrastructure to the photosynthetic light reactions.
光合生物已经发展出一种被称为状态转换(State Transition,简称 ST)的调节机制,通过光捕获复合物 II(LHCII)的运动来快速调整两个光系统之间的激发平衡。尽管许多研究人员假设类囊体膜的动态变化与 ST 相耦合,但这方面的证据仍然难以捉摸。为了在模式生物中阐明上述耦合,我们在这里使用了两种先进的显微镜技术,即我们最近开发的激发光谱显微镜(Excitation-spectral microscope,简称 ESM)和基于结构照明显微镜的超分辨率成像(Superresolution imaging based on structured-illumination microscopy,简称 SIM)。ESM 观察显示,在重复进行 ST 诱导时,会出现依赖于 ST 的光谱变化。令人惊讶的是,它澄清了在围绕淀粉粒的区域发生的 ST 比在其他区域发生的 ST 要少。此外,我们发现这种现象存在物种依赖性:137c 菌株表现出 ST 发生的明显细胞内不均匀性,而 4A+ 菌株则几乎没有。另一方面,SIM 观察解析了由 ST 诱导的照明引起的部分不可逆的细的类囊体转化。这种细的、不可逆的类囊体转化也在 STT7 激酶缺失突变体中观察到。这一结果表明,细的类囊体转化不仅仅是由 LHCII 磷酸化引起的,这表明类囊体超微结构对光合作用光反应具有高度敏感的性质。