Suppr超能文献

由一氧化碳诱导界面层实现的超稳定锌阳极

Ultrastable Zinc Anode Enabled by CO-Induced Interface Layer.

作者信息

Zhu Yuxuan, Hoh Hui Ying, Qian Shangshu, Sun Chuang, Wu ZhenZhen, Huang Zimo, Wang Liang, Batmunkh Munkhbayar, Lai Chao, Zhang Shanqing, Zhong Yu Lin

机构信息

Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Nathan Campus, Griffith University, Brisbane, Queensland 4111, Australia.

Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Brisbane, Queensland 4222, Australia.

出版信息

ACS Nano. 2022 Sep 27;16(9):14600-14610. doi: 10.1021/acsnano.2c05124. Epub 2022 Sep 6.

Abstract

Aqueous Zn-ion batteries (AZIBs), being safe, inexpensive, and pollution-free, are a promising candidate for future large-scale sustainable energy storage. However, in a conventional AZIBs setup, the Zn metal anode suffers oxidative corrosion, side reactions with electrolytes, disordered dendrite growth during operation, and consequently low efficiency and short lifespan. In this work, we discover that purging CO gas into the electrolyte could address these issues by eliminating dissolved O, inhibiting side reactions by buffering the local pH change, and preventing dendrite growth by inducing the in situ formation of a ZnCO solid electrolyte interphase layer. Moreover, the CO-purged electrolyte could enable a highly reversible plating/stripping behavior with a high Coulombic efficiency of 99.97% and an ultralong lifespan of 32,000 cycles (1600 h) even under an ultrahigh current density of 40 mA cm. Consequently, the CO-purged symmetrical cells deliver long cycling stability at a high depth of discharge of 57%, while the CO-purged Zn/VO full cells exhibit outstanding capacity retention of 66% after 1000 cycles at a high current density of 5 A g. Our strategy, the simple introduction of CO gas into the electrolyte, could effectively mediate the zinc anode's critical issues and provide a scalable and cost-effective pathway for the commercialization of AZIBs.

摘要

水系锌离子电池(AZIBs)安全、廉价且无污染,是未来大规模可持续储能的一个有前景的候选者。然而,在传统的AZIBs装置中,锌金属阳极会遭受氧化腐蚀、与电解质发生副反应、在运行过程中枝晶无序生长,从而导致效率低下和寿命短。在这项工作中,我们发现向电解质中通入CO气体可以解决这些问题,方法是去除溶解的O、通过缓冲局部pH变化抑制副反应以及通过诱导原位形成ZnCO固体电解质界面层来防止枝晶生长。此外,经CO处理的电解质即使在40 mA cm的超高电流密度下也能实现高度可逆的电镀/剥离行为,库仑效率高达99.97%,超长寿命达32000次循环(1600小时)。因此,经CO处理的对称电池在57%的高放电深度下具有长循环稳定性,而经CO处理的Zn/VO全电池在5 A g的高电流密度下1000次循环后表现出66%的出色容量保持率。我们的策略,即简单地向电解质中引入CO气体,可以有效地解决锌阳极的关键问题,并为AZIBs的商业化提供一条可扩展且经济高效的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验