Williams Nicholas J, Seymour Ieuan D, Fraggedakis Dimitrios, Skinner Stephen J
Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Nano Lett. 2022 Sep 28;22(18):7515-7521. doi: 10.1021/acs.nanolett.2c02468. Epub 2022 Sep 6.
Activation losses at solid oxide fuel cell (SOFC) electrodes have been widely attributed to charge transfer at the electrode surface. The electrostatic nature of electrode-gas interactions allows us to study these phenomena by simulating an electric field across the electrode-gas interface, where we are able to describe the activation overpotential using density functional theory (DFT). The electrostatic responses to the electric field are used to approximate the behavior of an electrode under electrical bias and have found a correlation with experimental data for three different reduction reactions at mixed ionic-electronic conducting (MIEC) electrode surfaces (HO and CO on CeO; O on LaFeO). In this work, we demonstrate the importance of decoupled ion-electron transfer and charged adsorbates on the performance of electrodes under nonequilibrium conditions. Finally, our findings on MIEC-gas interactions have potential implications in the fields of energy storage and catalysis.
固体氧化物燃料电池(SOFC)电极处的活化损失一直被广泛归因于电极表面的电荷转移。电极与气体相互作用的静电性质使我们能够通过模拟电极 - 气体界面上的电场来研究这些现象,在此我们能够使用密度泛函理论(DFT)描述活化过电位。对电场的静电响应被用于近似电极在电偏压下的行为,并且已经发现与混合离子 - 电子传导(MIEC)电极表面上三种不同还原反应的实验数据存在相关性(CeO上的H₂O和CO;LaFeO上的O₂)。在这项工作中,我们证明了在非平衡条件下,离子 - 电子转移解耦和带电吸附物对电极性能的重要性。最后,我们关于MIEC - 气体相互作用的研究结果在能量存储和催化领域具有潜在意义。