Fleig Jürgen
Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
Phys Chem Chem Phys. 2005 May 7;7(9):2027-37. doi: 10.1039/b501086a.
Even though the electrochemical oxygen reduction reaction at mixed conducting oxide electrodes is highly important for several applications of solid electrolytes a thorough discussion of the kinetics of electron and ion transfer steps at the corresponding electrode surface is not available yet. A straightforward application of current-voltage (I-V) relations derived for charge transfer reactions at electrode/electrolyte interfaces turns out to be inappropriate. In this contribution, a model is presented that relates concentrations of electrochemically active species and electrostatic potential steps at the electrode/gas interface of mixed conducting electrodes to the applied overpotential, and thus I-V formulas for the corresponding electron and ion transfer reactions are obtained. Depending on the specific parameters surprising effects are found such as an additional factor of two in the exponents of the I-V relation, irrelevance of the symmetry factor or limiting currents even if charge transfer is rate determining.
尽管混合导电氧化物电极上的电化学氧还原反应对于固体电解质的多种应用非常重要,但目前尚未对相应电极表面电子和离子转移步骤的动力学进行全面讨论。直接应用从电极/电解质界面电荷转移反应推导出来的电流-电压(I-V)关系被证明是不合适的。在本论文中,提出了一个模型,该模型将混合导电电极的电极/气体界面处电化学活性物种的浓度和静电势阶跃与所施加的过电位联系起来,从而得到了相应电子和离子转移反应的I-V公式。根据具体参数,发现了一些令人惊讶的效应,例如I-V关系指数中的额外因子2、对称因子无关紧要,或者即使电荷转移是速率决定因素时也存在极限电流。