Suppr超能文献

神经形态材料、器件及网络中的热管理

Thermal Management in Neuromorphic Materials, Devices, and Networks.

作者信息

Torres Felipe, Basaran Ali C, Schuller Ivan K

机构信息

Physics Department, Faculty of Science, University of Chile, 653, Santiago, 7800024, Chile.

Center of Nanoscience and Nanotechnology (CEDENNA), Av. Ecuador 3493, Santiago, 9170124, Chile.

出版信息

Adv Mater. 2023 Sep;35(37):e2205098. doi: 10.1002/adma.202205098. Epub 2023 Mar 31.

Abstract

Machine learning has experienced unprecedented growth in recent years, often referred to as an "artificial intelligence revolution." Biological systems inspire the fundamental approach for this new computing paradigm: using neural networks to classify large amounts of data into sorting categories. Current machine-learning schemes implement simulated neurons and synapses on standard computers based on a von Neumann architecture. This approach is inefficient in energy consumption, and thermal management, motivating the search for hardware-based systems that imitate the brain. Here, the present state of thermal management of neuromorphic computing technology and the challenges and opportunities of the energy-efficient implementation of neuromorphic devices are considered. The main features of brain-inspired computing and quantum materials for implementing neuromorphic devices are briefly described, the brain criticality and resistive switching-based neuromorphic devices are discussed, the energy and electrical considerations for spiking-based computation are presented, the fundamental features of the brain's thermal regulation are addressed, the physical mechanisms for thermal management and thermoelectric control of materials and neuromorphic devices are analyzed, and challenges and new avenues for implementing energy-efficient computing are described.

摘要

近年来,机器学习经历了前所未有的发展,常被称为“人工智能革命”。生物系统启发了这种新计算范式的基本方法:使用神经网络将大量数据分类到不同类别中。当前的机器学习方案基于冯·诺依曼架构在标准计算机上实现模拟神经元和突触。这种方法在能量消耗和热管理方面效率低下,这促使人们寻找模仿大脑的基于硬件的系统。在此,我们考虑了神经形态计算技术热管理的现状以及神经形态器件节能实现所面临的挑战和机遇。简要描述了受大脑启发的计算和用于实现神经形态器件的量子材料的主要特征,讨论了大脑临界性和基于电阻开关的神经形态器件,介绍了基于尖峰计算的能量和电学考量,阐述了大脑热调节的基本特征,分析了材料和神经形态器件热管理及热电控制的物理机制,并描述了实现节能计算所面临的挑战和新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验