Suppr超能文献

基于人工智能的胃活检诊断系统的开发和多机构验证。

Development and multi-institutional validation of an artificial intelligence-based diagnostic system for gastric biopsy.

机构信息

Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.

Japanese Society of Pathology, Tokyo, Japan.

出版信息

Cancer Sci. 2022 Oct;113(10):3608-3617. doi: 10.1111/cas.15514. Epub 2022 Aug 12.

Abstract

To overcome the increasing burden on pathologists in diagnosing gastric biopsies, we developed an artificial intelligence-based system for the pathological diagnosis of gastric biopsies (AI-G), which is expected to work well in daily clinical practice in multiple institutes. The multistage semantic segmentation for pathology (MSP) method utilizes the distribution of feature values extracted from patches of whole-slide images (WSI) like pathologists' "low-power view" information of microscopy. The training dataset included WSIs of 4511 gastric biopsy tissues from 984 patients. In tissue-level validation, MSP AI-G showed better accuracy (91.0%) than that of conventional patch-based AI-G (PB AI-G) (89.8%). Importantly, MSP AI-G unanimously achieved higher accuracy rates (0.946 ± 0.023) than PB AI-G (0.861 ± 0.078) in tissue-level analysis, when applied to the cohorts of 10 different institutes (3450 samples of 1772 patients in all institutes, 198-555 samples of 143-206 patients in each institute). MSP AI-G had high diagnostic accuracy and robustness in multi-institutions. When pathologists selectively review specimens in which pathologist's diagnosis and AI prediction are discordant, the requirement of a secondary review process is significantly less compared with reviewing all specimens by another pathologist.

摘要

为了减轻病理学家在诊断胃活检方面的负担,我们开发了一种基于人工智能的胃活检病理诊断系统(AI-G),预计该系统将在多个机构的日常临床实践中发挥良好的作用。多阶段语义分割病理学(MSP)方法利用从全切片图像(WSI)的斑块中提取的特征值分布,就像病理学家在显微镜下的“低倍视图”信息一样。训练数据集包括 984 名患者的 4511 份胃活检组织的 WSI。在组织水平验证中,MSP AI-G 的准确性(91.0%)优于传统的基于斑块的 AI-G(PB AI-G)(89.8%)。重要的是,MSP AI-G 在应用于 10 个不同机构的队列时,在组织水平分析中始终比 PB AI-G(0.861±0.078)具有更高的准确率(0.946±0.023)(所有机构共 3450 份样本,1772 名患者;每个机构 198-555 份样本,143-206 名患者)。MSP AI-G 在多机构中具有较高的诊断准确性和稳健性。当病理学家选择性地审查与病理医生诊断和 AI 预测不一致的标本时,与由另一名病理学家审查所有标本相比,对二次审查过程的需求明显减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2409/9530856/a0639d2840f2/CAS-113-3608-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验