Suppr超能文献

基于深度纹理表示的泛癌组织学通用编码。

Universal encoding of pan-cancer histology by deep texture representations.

机构信息

Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033, Japan.

Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033, Japan; Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033, Japan.

出版信息

Cell Rep. 2022 Mar 1;38(9):110424. doi: 10.1016/j.celrep.2022.110424.

Abstract

Cancer histological images contain rich biological and clinical information, but quantitative representation can be problematic and has prevented the direct comparison and accumulation of large-scale datasets. Here, we show successful universal encoding of cancer histology by deep texture representations (DTRs) produced by a bilinear convolutional neural network. DTR-based, unsupervised histological profiling, which captures the morphological diversity, is applied to cancer biopsies and reveals relationships between histologic characteristics and the response to immune checkpoint inhibitors (ICIs). Content-based image retrieval based on DTRs enables the quick retrieval of histologically similar images using The Cancer Genome Atlas (TCGA) dataset. Furthermore, via comprehensive comparisons with driver and clinically actionable gene mutations, we successfully predict 309 combinations of genomic features and cancer types from hematoxylin-and-eosin-stained images. With its mounting capabilities on accessible devices, such as smartphones, universal encoding for cancer histology has a strong impact on global equalization for cancer diagnosis and therapies.

摘要

癌症组织学图像包含丰富的生物学和临床信息,但定量表示可能存在问题,并且阻碍了大规模数据集的直接比较和积累。在这里,我们通过双线性卷积神经网络生成的深度纹理表示 (DTR) 成功地对癌症组织学进行了通用编码。基于 DTR 的无监督组织学分析,可捕捉形态多样性,应用于癌症活检,并揭示组织学特征与免疫检查点抑制剂 (ICI) 反应之间的关系。基于 DTR 的基于内容的图像检索可使用癌症基因组图谱 (TCGA) 数据集快速检索具有相似组织学特征的图像。此外,通过与驱动基因和临床可操作基因突变的全面比较,我们成功地从苏木精和伊红染色图像中预测了 309 种基因组特征和癌症类型的组合。随着其在智能手机等可访问设备上的功能不断增强,癌症组织学的通用编码对癌症诊断和治疗的全球均等化具有重要影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验