Suppr超能文献

基于深度纹理表示的泛癌组织学通用编码。

Universal encoding of pan-cancer histology by deep texture representations.

机构信息

Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033, Japan.

Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033, Japan; Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033, Japan.

出版信息

Cell Rep. 2022 Mar 1;38(9):110424. doi: 10.1016/j.celrep.2022.110424.

Abstract

Cancer histological images contain rich biological and clinical information, but quantitative representation can be problematic and has prevented the direct comparison and accumulation of large-scale datasets. Here, we show successful universal encoding of cancer histology by deep texture representations (DTRs) produced by a bilinear convolutional neural network. DTR-based, unsupervised histological profiling, which captures the morphological diversity, is applied to cancer biopsies and reveals relationships between histologic characteristics and the response to immune checkpoint inhibitors (ICIs). Content-based image retrieval based on DTRs enables the quick retrieval of histologically similar images using The Cancer Genome Atlas (TCGA) dataset. Furthermore, via comprehensive comparisons with driver and clinically actionable gene mutations, we successfully predict 309 combinations of genomic features and cancer types from hematoxylin-and-eosin-stained images. With its mounting capabilities on accessible devices, such as smartphones, universal encoding for cancer histology has a strong impact on global equalization for cancer diagnosis and therapies.

摘要

癌症组织学图像包含丰富的生物学和临床信息,但定量表示可能存在问题,并且阻碍了大规模数据集的直接比较和积累。在这里,我们通过双线性卷积神经网络生成的深度纹理表示 (DTR) 成功地对癌症组织学进行了通用编码。基于 DTR 的无监督组织学分析,可捕捉形态多样性,应用于癌症活检,并揭示组织学特征与免疫检查点抑制剂 (ICI) 反应之间的关系。基于 DTR 的基于内容的图像检索可使用癌症基因组图谱 (TCGA) 数据集快速检索具有相似组织学特征的图像。此外,通过与驱动基因和临床可操作基因突变的全面比较,我们成功地从苏木精和伊红染色图像中预测了 309 种基因组特征和癌症类型的组合。随着其在智能手机等可访问设备上的功能不断增强,癌症组织学的通用编码对癌症诊断和治疗的全球均等化具有重要影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验