Suppr超能文献

基于低频石英音叉和光纤耦合多程池的超高灵敏度HCl-LITES传感器。

Ultra-highly sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell.

作者信息

Qiao Shunda, Sampaolo Angelo, Patimisco Pietro, Spagnolo Vincenzo, Ma Yufei

机构信息

National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China.

PolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari, Italy.

出版信息

Photoacoustics. 2022 Jun 17;27:100381. doi: 10.1016/j.pacs.2022.100381. eCollection 2022 Sep.

Abstract

In this paper, an ultra-highly sensitive light-induced thermoelastic spectroscopy (LITES) based hydrogen chloride (HCl) sensor, exploiting a custom low-frequency quartz tuning fork (QTF) and a fiber-coupled multi-pass cell (MPC) with optical length of 40 m, was demonstrated. A low resonant frequency of 2.89 kHz of QTF is advantageous to produce a long energy accumulation time in LITES. Furthermore, the use of an MPC with the fiber-coupled structure not only avoids the difficulty in optical alignment but also enhances the system robustness. A distributed feedback (DFB) diode laser emitting at 1.74 µm was used as the excitation source. Under the same operating conditions, the using of low-frequency QTF provided a ~2 times signal improvement compared to that achieved using a standard 32 kHz QTF. At an integration time of 200 ms, a minimum detection limit (MDL) of 148 ppb was achieved. The reported sensor also shows an excellent linear response to HCl gas concentration in the investigated range.

摘要

本文展示了一种基于超高度灵敏光致热弹性光谱(LITES)的氯化氢(HCl)传感器,该传感器利用了定制的低频石英音叉(QTF)和光程为40米的光纤耦合多程池(MPC)。QTF的2.89kHz低谐振频率有利于在LITES中产生较长的能量积累时间。此外,使用具有光纤耦合结构的MPC不仅避免了光学对准的困难,还增强了系统的稳健性。采用发射波长为1.74μm的分布反馈(DFB)二极管激光器作为激发源。在相同的操作条件下,与使用标准32kHz QTF相比,使用低频QTF可使信号提高约2倍。在积分时间为200ms时,实现了148ppb的最低检测限(MDL)。所报道的传感器在所研究的范围内对HCl气体浓度也表现出出色的线性响应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/795d/9441257/3d2708ea7c51/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验