Suppr超能文献

脐尿管癌:利用国家癌症数据库建立的新分期系统。

Urachal carcinoma: A novel staging system utilizing the National Cancer Database.

机构信息

Department of Internal Medicine, Allegheny Health Network, Pittsburgh, Pennsylvania, USA.

Department of Hematology/Oncology, Lankenau Medical Center, Wynnewood, Pennsylvania, USA.

出版信息

Cancer Med. 2023 Feb;12(3):2752-2760. doi: 10.1002/cam4.5164. Epub 2022 Sep 7.

Abstract

BACKGROUND

Urachal carcinoma (UrC) is a rare, aggressive cancer with a poor prognosis that is frequently diagnosed in advanced stages. Due to its rarity, the current staging systems, namely Sheldon, Mayo, and Ontario were established based on relatively small patient cohorts, necessitating further validation. We used a large patient population from the National Cancer Database to model a novel staging system based on the Tumor (T), Node(N), and Metastasis (M) (TNM) staging system and compared it to established staging systems.

METHODS

We identified patients diagnosed with UrC between the years of 2004-2016. To determine median overall survival (OS), a Kaplan-Meier (KM) curve was generated using the Sheldon, Mayo, Ontario, and TNM staging system. A cox proportional-hazards regression model was developed to highlight predictors of overall survival.

RESULTS

A total of 626 patients were included in the analysis. The OS for the entire cohort was 58.2 months (50.1-67.8) with survival rates at 12, 24, and 60 months of 83%, 70%, and 49%, respectively (p < 0.0001). As compared to the Sheldon, Mayo, and Ontario staging system, our TNM staging system had a more balanced sample and survival distribution per stage and no overlap among stages on KM survival curves. The Mayo, Ontario, and TNM staging systems were more accurate in terms of stage-survival correlation than the Sheldon staging system (p < 0.05 for all stages).

CONCLUSIONS

The proposed novel TNM staging system for UrC has a more balanced sample distribution and a more accurate stage-survival correlation than the traditional Mayo, Sheldon, and Ontario staging systems. It is clinically applicable and enables better risk stratification, prognosis, and therapeutic decision-making.

摘要

背景

脐尿管癌(UrC)是一种罕见的侵袭性癌症,预后较差,常被诊断为晚期。由于其罕见性,目前的分期系统,即 Sheldon、Mayo 和 Ontario 分期系统,是基于相对较小的患者队列建立的,因此需要进一步验证。我们使用来自国家癌症数据库的大量患者人群,基于肿瘤(T)、淋巴结(N)和转移(M)(TNM)分期系统建立了一种新的分期系统,并将其与现有的分期系统进行了比较。

方法

我们确定了 2004 年至 2016 年期间被诊断为 UrC 的患者。为了确定中位总生存期(OS),我们使用 Sheldon、Mayo、Ontario 和 TNM 分期系统生成了 Kaplan-Meier(KM)曲线。我们开发了一个 Cox 比例风险回归模型来突出总生存的预测因素。

结果

共有 626 名患者纳入分析。整个队列的 OS 为 58.2 个月(50.1-67.8),12、24 和 60 个月的生存率分别为 83%、70%和 49%(p<0.0001)。与 Sheldon、Mayo 和 Ontario 分期系统相比,我们的 TNM 分期系统具有更平衡的样本和生存分布,并且在 KM 生存曲线中各期之间没有重叠。Mayo、Ontario 和 TNM 分期系统在分期与生存相关性方面比 Sheldon 分期系统更准确(所有分期均为 p<0.05)。

结论

与传统的 Mayo、Sheldon 和 Ontario 分期系统相比,新提出的 UrC 的新型 TNM 分期系统具有更平衡的样本分布和更准确的分期与生存相关性。它具有临床应用价值,能够更好地进行风险分层、预后和治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d3/9939091/8861d92de1a9/CAM4-12-2752-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验