Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
J Chem Inf Model. 2022 Sep 26;62(18):4420-4426. doi: 10.1021/acs.jcim.2c00616. Epub 2022 Sep 7.
In recent years, machine learning (ML) models have been found to quickly predict various molecular properties with accuracy comparable to high-level quantum chemistry methods. One such example is the calculation of electrostatic potential (ESP). Different ESP prediction ML models were proposed to generate surface molecular charge distribution. Electrostatic complementarity (EC) can apply ESP data to quantify the complementarity between a ligand and its binding pocket, leading to the potential to increase the efficiency of drug design. However, there is not much research discussing EC score functions and their applicability domain. We propose a new EC score function modified from the one originally developed by Bauer and Mackey, and confirm its effectiveness against the available Pearson's correlation coefficient. Additionally, the applicability domain of the EC score and two indices used to define the EC score application scope will be discussed.
近年来,机器学习(ML)模型被发现能够快速准确地预测各种分子性质,其准确性可与高级量子化学方法相媲美。静电势能 (ESP) 的计算就是一个例子。已经提出了不同的 ESP 预测 ML 模型来生成表面分子电荷分布。静电互补性 (EC) 可以应用 ESP 数据来量化配体与其结合口袋之间的互补性,从而有可能提高药物设计的效率。然而,关于 EC 得分函数及其适用域的研究并不多。我们提出了一个新的 EC 得分函数,对 Bauer 和 Mackey 最初开发的函数进行了修改,并通过与现有的 Pearson 相关系数进行了验证。此外,还将讨论 EC 得分的适用域以及用于定义 EC 得分应用范围的两个指数。