Suppr超能文献

改良静电互补评分函数及其在药物设计中的应用边界探索。

Modified Electrostatic Complementary Score Function and Its Application Boundary Exploration in Drug Design.

机构信息

Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.

出版信息

J Chem Inf Model. 2022 Sep 26;62(18):4420-4426. doi: 10.1021/acs.jcim.2c00616. Epub 2022 Sep 7.

Abstract

In recent years, machine learning (ML) models have been found to quickly predict various molecular properties with accuracy comparable to high-level quantum chemistry methods. One such example is the calculation of electrostatic potential (ESP). Different ESP prediction ML models were proposed to generate surface molecular charge distribution. Electrostatic complementarity (EC) can apply ESP data to quantify the complementarity between a ligand and its binding pocket, leading to the potential to increase the efficiency of drug design. However, there is not much research discussing EC score functions and their applicability domain. We propose a new EC score function modified from the one originally developed by Bauer and Mackey, and confirm its effectiveness against the available Pearson's correlation coefficient. Additionally, the applicability domain of the EC score and two indices used to define the EC score application scope will be discussed.

摘要

近年来,机器学习(ML)模型被发现能够快速准确地预测各种分子性质,其准确性可与高级量子化学方法相媲美。静电势能 (ESP) 的计算就是一个例子。已经提出了不同的 ESP 预测 ML 模型来生成表面分子电荷分布。静电互补性 (EC) 可以应用 ESP 数据来量化配体与其结合口袋之间的互补性,从而有可能提高药物设计的效率。然而,关于 EC 得分函数及其适用域的研究并不多。我们提出了一个新的 EC 得分函数,对 Bauer 和 Mackey 最初开发的函数进行了修改,并通过与现有的 Pearson 相关系数进行了验证。此外,还将讨论 EC 得分的适用域以及用于定义 EC 得分应用范围的两个指数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验