Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre-RS, Brazil.
Curr Med Chem. 2021;28(24):4954-4971. doi: 10.2174/0929867328666210201150842.
Electrostatic interactions are one of the forces guiding the binding of molecules to proteins. The assessment of this interaction through computational approaches makes it possible to evaluate the energy of protein-drug complexes.
Our purpose here is to review some of the methods used to calculate the electrostatic energy of protein-drug complexes and explore the capacity of these approaches for the generation of new computational tools for drug discovery using the abstraction of scoring function space.
Here, we present an overview of the AutoDock4 semi-empirical scoring function used to calculate binding affinity for protein-drug complexes. We focus our attention on electrostatic interactions and how to explore recently published results to increase the predictive performance of the computational models to estimate the energetics of protein- drug interactions. Public data available at Binding MOAD, BindingDB, and PDBbind were used to review the predictive performance of different approaches to predict binding affinity.
A comprehensive outline of the scoring function used to evaluate potential energy available in docking programs is presented. Recent developments of computational models to predict protein-drug energetics were able to create targeted-scoring functions to predict binding to these proteins. These targeted models outperform classical scoring functions and highlight the importance of electrostatic interactions in the definition of the binding.
Here, we reviewed the development of scoring functions to predict binding affinity through the application of a semi-empirical free energy scoring function. Our studies show the superior predictive performance of machine learning models when compared with classical scoring functions and the importance of electrostatic interactions for binding affinity.
静电相互作用是指导分子与蛋白质结合的力之一。通过计算方法评估这种相互作用,可以评估蛋白质-药物复合物的能量。
我们的目的是回顾一些用于计算蛋白质-药物复合物静电能的方法,并探索这些方法在使用评分函数空间抽象生成新的药物发现计算工具方面的能力。
在这里,我们概述了 AutoDock4 半经验评分函数,用于计算蛋白质-药物复合物的结合亲和力。我们专注于静电相互作用以及如何探索最近发表的结果,以提高计算模型预测蛋白质-药物相互作用能量的性能。使用 Binding MOAD、BindingDB 和 PDBbind 上提供的公共数据来回顾不同方法预测结合亲和力的预测性能。
提出了一种用于评估对接程序中可用势能的评分函数的综合概述。最近开发的用于预测蛋白质-药物能量学的计算模型能够创建靶向评分函数来预测与这些蛋白质的结合。这些靶向模型的表现优于经典评分函数,突出了静电相互作用在定义结合中的重要性。
在这里,我们通过应用半经验自由能评分函数回顾了开发用于预测结合亲和力的评分函数的进展。我们的研究表明,与经典评分函数相比,机器学习模型具有更好的预测性能,并且静电相互作用对结合亲和力很重要。