Suppr超能文献

环二核苷酸 cGMP 通过控制 FsnR 介导的细菌泳动发挥双重调节作用。

Dual Regulatory Role Exerted by Cyclic Dimeric GMP To Control FsnR-Mediated Bacterial Swimming.

机构信息

State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

School of Life Science, Hebei University, Baoding, China.

出版信息

mBio. 2022 Oct 26;13(5):e0141422. doi: 10.1128/mbio.01414-22. Epub 2022 Sep 7.

Abstract

Bacterial motility has great medical and ecological significance because of its essential role in bacterial survival and pathogenesis. Cyclic dimeric GMP (c-di-GMP), a second messenger in bacteria, is the predominant regulator of flagellar synthesis and motility and possesses turnover mechanisms that have been thoroughly investigated. Therefore, much attention has been focused on identifying the upstream stimulatory signals and downstream modules that respond to altered c-di-GMP levels. Here, we systematically analyzed c-di-GMP cyclases and phosphodiesterases in Stenotrophomonas maltophilia to screen for motility regulators. Of these enzymes, we identified and characterized a new phosphodiesterase named SisP, which was found to facilitate bacterial swimming upon stimulation with ferrous iron. SisP-mediated degradation of c-di-GMP leads to FsnR-dependent transcription of flagellar genes. Remarkably, c-di-GMP controls FsnR via two independent mechanisms: by direct binding and indirectly by modulating its phosphorylation state. In this study, we deciphered a novel "one stone, two birds" regulatory strategy of c-di-GMP and uncovered the signal that stimulates c-di-GMP hydrolysis. Facilitation of bacterial swimming motility by ferrous iron might contribute to the higher risk of bacterial infection in acutely ill patients. Stenotrophomonas maltophilia has become a great threat to human health because of the high mortality of infected patients. Swimming motility plays a crucial role in regulating bacterial virulence and adaptation. However, limited progress has been made in cyclic dimeric GMP (c-di-GMP) controlling swimming motility of S. maltophilia. Here, we characterized c-di-GMP turnover enzymes encoded by S. maltophilia and dissected the regulatory details of a phosphodiesterase named SisP. We demonstrated that SisP degrades c-di-GMP to fully activate FsnR through directly releasing FsnR from the FsnR-c-di-GMP complex and indirectly increasing its phosphorylation level. This finding uncovered a quantitative, rather than an on-off, regulatory manner employed by c-di-GMP to regulate activities of its effectors. Identification of the specific activation of SisP by ferrous iron proposes SisP as a putative drug-target for controlling bacterial infection and ferrous iron at the wounds or cuts as a putative factor contributing to the higher risk of bacterial infection.

摘要

细菌的运动性具有重要的医学和生态学意义,因为它在细菌的生存和发病机制中起着至关重要的作用。环二鸟苷酸(c-di-GMP)是细菌中的第二信使,是鞭毛合成和运动的主要调节剂,其周转机制已被彻底研究。因此,人们非常关注识别响应 c-di-GMP 水平变化的上游刺激信号和下游模块。在这里,我们系统地分析了嗜麦芽寡养单胞菌中的 c-di-GMP 环化酶和磷酸二酯酶,以筛选运动调节剂。在这些酶中,我们鉴定并表征了一种新的磷酸二酯酶,命名为 SisP,它在受到亚铁刺激时促进细菌的游动。SisP 介导的 c-di-GMP 降解导致 FsnR 依赖的鞭毛基因转录。值得注意的是,c-di-GMP 通过两种独立的机制控制 FsnR:直接结合和间接调节其磷酸化状态。在这项研究中,我们破译了 c-di-GMP 的一种新的“一石二鸟”调控策略,并揭示了刺激 c-di-GMP 水解的信号。亚铁促进细菌游动可能导致急性病患者的细菌感染风险更高。嗜麦芽寡养单胞菌已成为人类健康的巨大威胁,因为感染患者的死亡率很高。游动运动在调节细菌毒力和适应性方面起着至关重要的作用。然而,在控制嗜麦芽寡养单胞菌游动运动方面,环二鸟苷酸(c-di-GMP)的进展有限。在这里,我们描述了嗜麦芽寡养单胞菌编码的 c-di-GMP 周转酶,并剖析了一种名为 SisP 的磷酸二酯酶的调控细节。我们证明,SisP 通过直接从 FsnR-c-di-GMP 复合物中释放 FsnR,并间接增加其磷酸化水平,降解 c-di-GMP 以完全激活 FsnR。这一发现揭示了 c-di-GMP 调节其效应物活性所采用的定量而不是开/关的调控方式。鉴定出亚铁特异性激活 SisP 提出 SisP 是控制细菌感染和铁的潜在药物靶点,而伤口或切口处的亚铁是导致细菌感染风险更高的潜在因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d085/9600515/e34bbedc44b4/mbio.01414-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验