State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, People's Republic of China.
Nano Lett. 2022 Sep 28;22(18):7467-7476. doi: 10.1021/acs.nanolett.2c02398. Epub 2022 Sep 7.
Electrophysiological recording, as a long-sought objective, plays a crucial role in fundamental biomedical research and practical clinical applications. The challenge in developing electrophysiological detection platforms is to combine simplicity, stability, and sensitivity in the same device. In this study, we develop a nanotrapped microelectrode based on a porous PET membrane, which is compatible with large-scale microtechnologies. The nanotraps can promote the protrusion of the local cell membrane in the hollow center and offer a unique nanoedge structure for tight sealing and effective electroporation. We demonstrate that scalable nanotraps can enhance cell-electrode coupling and perform high-quality intracellular recording. Further, the nanoedge-enhanced electroporation and minimally invasive nanotrapped recordings afford much longer intracellular access of over 100 min and permit consecutive electroporation events in a short period of time. This study suggests that the geometry-regulating strategy of the cell-electrode nanointerface could significantly improve the intracellular recording performance of a nanopatterned electrode.
电生理记录作为长期追求的目标,在基础生物医学研究和实际临床应用中起着至关重要的作用。开发电生理检测平台的挑战在于在同一设备中结合简单性、稳定性和灵敏度。在这项研究中,我们开发了一种基于多孔 PET 膜的纳米捕获微电极,该电极与大规模微技术兼容。纳米捕获可以促进局部细胞膜在中空中心的突出,并为紧密密封和有效电穿孔提供独特的纳米边缘结构。我们证明可扩展的纳米捕获可以增强细胞-电极的耦合,并进行高质量的细胞内记录。此外,纳米边缘增强的电穿孔和微创纳米捕获记录可提供超过 100 分钟的更长细胞内通道,并允许在短时间内连续进行电穿孔事件。本研究表明,细胞-电极纳米界面的几何调节策略可以显著提高纳米图案化电极的细胞内记录性能。