Suppr超能文献

Quenching of the zinc-protoporphyrin triplet state as a measure of small-molecule diffusion through the structure of myoglobin.

作者信息

Barboy N, Feitelson J

出版信息

Biochemistry. 1987 Jun 2;26(11):3240-4. doi: 10.1021/bi00385a046.

Abstract

The diffusion of small molecules through the myoglobin structure was studied. It has been shown that the fluorescent Zn-protoporphyrin substitutes easily for the native nonfluorescent Fe-protoporphyrin in myoglobin. The quenching rate of the E-type delayed fluorescence of Zn-protoporphyrin in a substituted myoglobin by the quenchers oxygen and anthraquinonesulfonate was used to measure their diffusion from the ambient solution through the protein to the ligand binding site. The quenching rate constant (at 21 degrees C) for oxygen is kq = (9.6 +/- 0.9) X 10(7) M-1 S-1, only 1 order of magnitude less than that for Zn-hematoporphyrin quenching in aqueous solution. The activation energy in the range between 2 and 40 degrees C is Ea = 6.0 +/- 0.6 kcal/mol. The corresponding data for anthraquinonesulfonate are kq = (2.1 +/- 0.3) X 10(8) M-1 S-1 and Ea = 5.8 +/- 0.6 kcal/mol. Taking into account the statistical factor involved in the oxygen quenching of the Zn-porphyrin triplet, the quenching rates are very similar. The data are discussed in terms of the "gated reaction" theory of Northrup and McCammon. The similar rate constants and activation energies indicate that the diffusion rate in the protein is determined by the frequency of the conformational changes that open "gates" for the passage of the quencher through the protein.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验