Gabriel N E, Roberts M F
Biochemistry. 1987 May 5;26(9):2432-40. doi: 10.1021/bi00383a006.
Asymmetric unilamellar vesicles are produced when short-chain phospholipids (fatty acyl chain lengths of 6-8 carbons) are mixed with long-chain phospholipids (fatty acyl chain lengths of 14 carbons or longer) in ratios of 1:4 short-chain/long-chain component. Short-chain lecithins are preferentially distributed on the outer monolayer, while a short-chain phosphatidylethanolamine derivative appears to localize on the inner monolayer of these spontaneously forming vesicles. Lanthanide NMR shift experiments clearly show a difference in head-group/ion interactions between the short-chain and long-chain species. Two-dimensional 1H NMR studies reveal efficient spin diffusion networks for the short-chain species embedded in the long-chain bilayer matrix. The short-chain lecithin is considerably more mobile than the long-chain component but has hindered motion compared to short-chain lecithin micelles. This differentiation in physical characteristics of the two phospholipid components is critical to understanding the activity of phospholipases toward these binary systems.
当短链磷脂(脂肪酰链长度为6 - 8个碳)与长链磷脂(脂肪酰链长度为14个碳或更长)以1:4的短链/长链组分比例混合时,会产生不对称单层囊泡。短链卵磷脂优先分布在外层单分子层上,而一种短链磷脂酰乙醇胺衍生物似乎定位于这些自发形成的囊泡的内层单分子层上。镧系元素核磁共振位移实验清楚地表明了短链和长链物种之间头部基团/离子相互作用的差异。二维¹H核磁共振研究揭示了嵌入长链双层基质中的短链物种的有效自旋扩散网络。短链卵磷脂比长链组分的流动性要大得多,但与短链卵磷脂胶束相比,其运动受到阻碍。这两种磷脂组分物理特性的差异对于理解磷脂酶对这些二元体系的活性至关重要。