Suppr超能文献

通过知识转移方法识别离子通道调节肽的预测模型

Prediction Models for Identifying Ion Channel-Modulating Peptides via Knowledge Transfer Approaches.

作者信息

Lee Byungjo, Shin Min Kyoung, Kim Taegun, Shim Yu Jeong, Joo Jong Wha J, Sung Jung-Suk, Jang Wonhee

出版信息

IEEE J Biomed Health Inform. 2022 Dec;26(12):6150-6160. doi: 10.1109/JBHI.2022.3204776. Epub 2022 Dec 7.

Abstract

Ion channels, which can be modulated by peptides, are promising drug targets for neurological, metabolic, and cardiovascular disorders. Because it is expensive and labor-intensive to experimentally screen ion channel-modulating peptides (IMPs), in-silico approaches can serve as excellent alternatives. In this study, we present PrIMP, prediction models for screening IMPs that can target sodium, potassium, and calcium ion channels, as well as nicotine acetylcholine receptors (nAChRs). To overcome the data insufficiency of the IMPs, we utilized two types of knowledge transfer approaches: multi-task learning (MTL) and transfer learning (TL). MTL enabled model training for four target tasks simultaneously with hard parameter sharing, thereby increasing model generalization. TL transferred knowledge of pre-trained model weights from antimicrobial peptide data, which was a much larger, naturally-occurring functional peptide dataset that could potentially improve the model performance. MTL and TL successfully improved the prediction performance of prediction models. In addition, a hybrid approach by implementing deep learning along with traditional machine learning was utilized, with additional performance improvements. PrIMP achieved F1 scores of 0.924 (sodium ion channel), 0.937 (potassium ion channel), 0.898 (calcium ion channel), and 0.931 (nAChRs). The pre-processed dataset and proposed model are available at https://github.com/bzlee-bio/PrIMP.

摘要

可被肽类调节的离子通道是治疗神经、代谢和心血管疾病的有前景的药物靶点。由于通过实验筛选离子通道调节肽(IMP)成本高昂且 labor-intensive(此处可能有误,推测为“labor-intensive”,意为劳动密集型),基于计算机的方法可作为很好的替代方案。在本研究中,我们提出了PrIMP,即用于筛选可靶向钠、钾和钙离子通道以及烟碱型乙酰胆碱受体(nAChR)的IMP的预测模型。为克服IMP数据不足的问题,我们采用了两种知识转移方法:多任务学习(MTL)和迁移学习(TL)。MTL通过硬参数共享实现了四个目标任务的同时模型训练,从而提高了模型的泛化能力。TL从抗菌肽数据中转移了预训练模型权重的知识,抗菌肽数据是一个大得多的天然存在的功能性肽数据集,可能会提高模型性能。MTL和TL成功提高了预测模型的预测性能。此外,还采用了一种将深度学习与传统机器学习相结合的混合方法,进一步提高了性能。PrIMP在钠离子通道上的F1分数为0.924,钾离子通道为0.937,钙离子通道为0.898,nAChR为0.931。预处理后的数据集和提出的模型可在https://github.com/bzlee-bio/PrIMP上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验