Suppr超能文献

BayeshERG:一种用于预测 hERG 通道阻滞剂的强大、可靠且可解释的深度学习模型。

BayeshERG: a robust, reliable and interpretable deep learning model for predicting hERG channel blockers.

机构信息

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju, 61005, Republic of Korea.

出版信息

Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac211.

Abstract

Unintended inhibition of the human ether-à-go-go-related gene (hERG) ion channel by small molecules leads to severe cardiotoxicity. Thus, hERG channel blockage is a significant concern in the development of new drugs. Several computational models have been developed to predict hERG channel blockage, including deep learning models; however, they lack robustness, reliability and interpretability. Here, we developed a graph-based Bayesian deep learning model for hERG channel blocker prediction, named BayeshERG, which has robust predictive power, high reliability and high resolution of interpretability. First, we applied transfer learning with 300 000 large data in initial pre-training to increase the predictive performance. Second, we implemented a Bayesian neural network with Monte Carlo dropout to calibrate the uncertainty of the prediction. Third, we utilized global multihead attentive pooling to augment the high resolution of structural interpretability for the hERG channel blockers and nonblockers. We conducted both internal and external validations for stringent evaluation; in particular, we benchmarked most of the publicly available hERG channel blocker prediction models. We showed that our proposed model outperformed predictive performance and uncertainty calibration performance. Furthermore, we found that our model learned to focus on the essential substructures of hERG channel blockers via an attention mechanism. Finally, we validated the prediction results of our model by conducting in vitro experiments and confirmed its high validity. In summary, BayeshERG could serve as a versatile tool for discovering hERG channel blockers and helping maximize the possibility of successful drug discovery. The data and source code are available at our GitHub repository (https://github.com/GIST-CSBL/BayeshERG).

摘要

小分子意外抑制人类 Ether-à-go-go 相关基因(hERG)离子通道可导致严重的心脏毒性。因此,hERG 通道阻断是新药开发的一个重要关注点。已经开发了几种计算模型来预测 hERG 通道阻断,包括深度学习模型;然而,它们缺乏稳健性、可靠性和可解释性。在这里,我们开发了一种基于图的贝叶斯深度学习模型来预测 hERG 通道阻滞剂,命名为 BayeshERG,它具有强大的预测能力、高可靠性和高解释分辨率。首先,我们应用了带有 30 万大数据的迁移学习进行初始预训练,以提高预测性能。其次,我们实现了一个带有蒙特卡罗辍学的贝叶斯神经网络来校准预测的不确定性。第三,我们利用全局多头注意池来增强 hERG 通道阻滞剂和非阻滞剂的结构可解释性的高分辨率。我们进行了内部和外部验证以进行严格评估;特别是,我们对大多数现有的 hERG 通道阻滞剂预测模型进行了基准测试。我们表明,我们提出的模型在预测性能和不确定性校准性能方面都表现出色。此外,我们发现我们的模型通过注意力机制学会了关注 hERG 通道阻滞剂的基本亚结构。最后,我们通过进行体外实验验证了我们模型的预测结果,并证实了其高有效性。总之,BayeshERG 可以作为一种通用工具,用于发现 hERG 通道阻滞剂,并帮助最大限度地提高药物发现成功的可能性。数据和源代码可在我们的 GitHub 存储库(https://github.com/GIST-CSBL/BayeshERG)中获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验