Suppr超能文献

一种结合频域特征与交互式多模型平滑器的新型心电图衍生呼吸方法。

A Novel ECG-Derived Respiration Method Combining Frequency-Domain Feature and Interacting Multiple Model Smoother.

作者信息

Dong Kejun, Zhao Li, Zou Cairong, Cai Zhipeng, Yan Chang, Li Yang, Li Jianqing, Liu Chengyu

出版信息

IEEE Trans Biomed Eng. 2023 Mar;70(3):888-898. doi: 10.1109/TBME.2022.3204764. Epub 2023 Feb 17.

Abstract

OBJECTIVE

ECG-derived respiration (EDR) is a low-cost and productive means for capturing respiratory activity. In particular, as the primary procedure in some cardiorespiratory-related studies, the quality of EDR is decisive for the performance of subsequent analyses.

APPROACH

In this paper, we proposed a novel EDR method based on the feature derived from the first moment (mean frequency) of the power spectrum (FMS). After obtaining the EDR signal from the feature, we introduced the Interacting Multiple Model (IMM) smoother to enhance the similarity of the EDR signal to the reference respiration. The assessment of the approach consisted of two steps: 1) the performance of extracted feature was verified against R-peak misalignment and noise. 2) the enhancement of IMM smoother to EDR waveforms was evaluated based on waveform correlation and respiratory rate estimation. All the assessments were conducted under the Fantasia database and Drivers database.

RESULTS

The FMS improved robustness against R peak offsets compared to most established feature-based EDR algorithms, but a slight 5% improvement of waveform correlation against RR interval-based feature under accurate R peaks. The IMM smoother performed similarly with the Kalman filter in the static database but realized the enhancement of some extent of the EDR waveform in the ambulatory database.

SIGNIFICANCE

The proposed method investigated frequency domain mapping of ECG morphological changes caused by respiratory modulation and explained the EDR signal as a non-stationary time series, which provided a direction of better fitting the natural respiration process and enhancing the EDR waveform.

摘要

目的

心电图衍生呼吸(EDR)是一种低成本且高效的获取呼吸活动的方法。特别是,作为一些心肺相关研究的主要程序,EDR的质量对于后续分析的性能起着决定性作用。

方法

在本文中,我们提出了一种基于功率谱一阶矩(平均频率)导出特征的新型EDR方法。从该特征获取EDR信号后,我们引入交互多模型(IMM)平滑器以增强EDR信号与参考呼吸的相似性。该方法的评估包括两个步骤:1)针对R波峰未对准和噪声验证提取特征的性能。2)基于波形相关性和呼吸率估计评估IMM平滑器对EDR波形的增强效果。所有评估均在Fantasia数据库和Drivers数据库下进行。

结果

与大多数已建立的基于特征的EDR算法相比,FMS提高了对R波峰偏移的鲁棒性,但在准确R波峰下,与基于RR间期的特征相比,波形相关性略有5%的提高。IMM平滑器在静态数据库中的表现与卡尔曼滤波器相似,但在动态数据库中实现了对EDR波形一定程度的增强。

意义

所提出的方法研究了呼吸调制引起的心电图形态变化的频域映射,并将EDR信号解释为非平稳时间序列,为更好地拟合自然呼吸过程和增强EDR波形提供了一个方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验