Suppr超能文献

基于分段搏动调制法的心电图衍生呼吸信号

Electrocardiogram Derived Respiratory Signal through the Segmented-Beat Modulation Method.

作者信息

Pambianco Benedetta, Sbrollini Agnese, Marcantoni Ilaria, Morettini Micaela, Fioretti Sandro, Burattini Laura

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5681-5684. doi: 10.1109/EMBC.2018.8513493.

Abstract

Respiration rate and variability are indicators of health-condition changes. In chronic disease management, it is becoming increasingly desirable to use wearable devices in order to minimize invasiveness and maximize comfort. However, not all wearable devices integrate sensors for direct acquisition of respiratory (DAR) signal. In these cases, the breathing extraction can be done through indirect methods, typically from the electrocardiogram (ECG). The aim of the present study is to propose a single-ECG-lead procedure based on the Segmented-Beat Modulation Method (SBMM) as a suitable tool for ECG-derived respiratory (EDR) signal estimation and respiration frequency (RF) identification. Clinical data consisted of combined measurements of two-lead (I and II) ECG and DAR signals from 20 healthy subjects ('CEBS' database by Physionet). Each respiration-affected ECG lead was submitted to a specifically designed SBMMbased procedure for EDR estimation by ECG subtraction. RF from EDR and DAR were identified as the frequency at which the Fourier spectrum has a maximum in the 0.07-1.00 Hz frequency range. Results indicated that mean RF values over the population from EDR signals ($0.27 \pm 0.09$ Hz and $0.27 \pm 0.09$ Hz from leads I and II, respectively) were not significantly different from that from DAR ($0.28 \pm 0.09$ Hz). Moreover, differences in RF identification ($0.01 \pm 0.03$ Hz and $0.00 \pm 0.02$ Hz from leads I and II, respectively) were, on average not significantly different from 0. Thus, SBMM-based procedure is robust and accurate for EDR estimation and RF identification.

摘要

呼吸频率和变异性是健康状况变化的指标。在慢性病管理中,越来越希望使用可穿戴设备,以尽量减少侵入性并最大化舒适度。然而,并非所有可穿戴设备都集成了用于直接采集呼吸(DAR)信号的传感器。在这些情况下,可以通过间接方法进行呼吸提取,通常是从心电图(ECG)中提取。本研究的目的是提出一种基于分段心跳调制方法(SBMM)的单导联心电图程序,作为一种适用于从心电图推导呼吸(EDR)信号估计和呼吸频率(RF)识别的工具。临床数据包括来自20名健康受试者的双导联(I和II)心电图和DAR信号的联合测量(Physionet的“CEBS”数据库)。通过心电图减法,将每个受呼吸影响的心电图导联提交给专门设计的基于SBMM的程序进行EDR估计。将来自EDR和DAR的RF确定为傅里叶频谱在0.07 - 1.00 Hz频率范围内具有最大值的频率。结果表明,来自EDR信号的总体平均RF值(分别来自导联I和II的为$0.27 \pm 0.09$ Hz和$0.27 \pm 0.09$ Hz)与来自DAR的($0.28 \pm 0.09$ Hz)没有显著差异。此外,RF识别的差异(分别来自导联I和II的为$0.01 \pm 0.03$ Hz和$0.00 \pm 0.02$ Hz)平均与0没有显著差异。因此,基于SBMM的程序对于EDR估计和RF识别是稳健且准确的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验