Suppr超能文献

利用调控组关联研究鉴定与复杂性状遗传风险相关的增强子特性。

Identifying enhancer properties associated with genetic risk for complex traits using regulome-wide association studies.

机构信息

Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.

Medical Scientist Training Program, UMSOM, Baltimore, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2022 Sep 7;18(9):e1010430. doi: 10.1371/journal.pcbi.1010430. eCollection 2022 Sep.

Abstract

Genetic risk for complex traits is strongly enriched in non-coding genomic regions involved in gene regulation, especially enhancers. However, we lack adequate tools to connect the characteristics of these disruptions to genetic risk. Here, we propose RWAS (Regulome Wide Association Study), a new application of the MAGMA software package to identify the characteristics of enhancers that contribute to genetic risk for disease. RWAS involves three steps: (i) assign genotyped SNPs to cell type- or tissue-specific regulatory features (e.g., enhancers); (ii) test associations of each regulatory feature with a trait of interest for which genome-wide association study (GWAS) summary statistics are available; (iii) perform enhancer-set enrichment analyses to identify quantitative or categorical features of regulatory elements that are associated with the trait. These steps are implemented as a novel application of MAGMA, a tool originally developed for gene-based GWAS analyses. Applying RWAS to interrogate genetic risk for schizophrenia, we discovered a class of risk-associated AT-rich enhancers that are active in the developing brain and harbor binding sites for multiple transcription factors with neurodevelopmental functions. RWAS utilizes open-source software, and we provide a comprehensive collection of annotations for tissue-specific enhancer locations and features, including their evolutionary conservation, AT content, and co-localization with binding sites for hundreds of TFs. RWAS will enable researchers to characterize properties of regulatory elements associated with any trait of interest for which GWAS summary statistics are available.

摘要

复杂性状的遗传风险在参与基因调控的非编码基因组区域中得到了强烈富集,尤其是增强子。然而,我们缺乏将这些干扰的特征与遗传风险联系起来的充分工具。在这里,我们提出了 RWAS(调控区全基因组关联研究),这是 MAGMA 软件包的一个新应用,用于识别导致疾病遗传风险的增强子的特征。RWAS 包括三个步骤:(i) 将基因分型的 SNPs 分配给细胞类型或组织特异性调节特征(例如,增强子);(ii) 测试每个调节特征与具有全基因组关联研究 (GWAS) 汇总统计数据的感兴趣性状之间的关联;(iii) 进行增强子集富集分析,以识别与性状相关的调节元件的定量或分类特征。这些步骤是作为 MAGMA 的一个新应用来实现的,MAGMA 是最初为基于基因的 GWAS 分析而开发的工具。通过应用 RWAS 来研究精神分裂症的遗传风险,我们发现了一类与风险相关的富含 AT 的增强子,它们在发育中的大脑中活跃,并具有多个具有神经发育功能的转录因子的结合位点。RWAS 利用开源软件,我们提供了组织特异性增强子位置和特征的全面注释集,包括它们的进化保守性、AT 含量以及与数百个 TF 的结合位点的共定位。RWAS 将使研究人员能够描述与任何具有 GWAS 汇总统计数据的感兴趣性状相关的调节元件的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2074/9484640/660d11ea04d3/pcbi.1010430.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验