Suppr超能文献

利用 Fe(III)-还原超嗜热古菌产生的纳米相铁矿物的光谱检测

Spectral Detection of Nanophase Iron Minerals Produced by Fe(III)-Reducing Hyperthermophilic Crenarchaea.

机构信息

Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA.

Planetary Science Institute, Tucson, Arizona, USA.

出版信息

Astrobiology. 2023 Jan;23(1):43-59. doi: 10.1089/ast.2022.0042. Epub 2022 Sep 7.

Abstract

Mineral transformations by two hyperthermophilic Fe(III)-reducing crenarchaea, and , were examined using synthetic nanophase ferrihydrite, lepidocrocite, and akaganeite separately as terminal electron acceptors and compared with abiotic mineral transformations under similar conditions. Spectral analyses using visible-near-infrared, Fourier-transform infrared attenuated total reflectance (FTIR-ATR), Raman, and Mössbauer spectroscopies were complementary and revealed formation of various biomineral assemblages distinguishable from abiotic phases. The most extensive biogenic mineral transformation occurred with ferrihydrite, which formed primarily magnetite with spectral features similar to biomagnetite relative to a synthetic magnetite standard. The FTIR-ATR spectra of ferrihydrite bioreduced by also showed possible cell-associated organics such as exopolysaccharides. Such combined detections of biomineral assemblages and organics might serve as biomarkers for hyperthermophilic Fe(III) reduction. With lepidocrocite, produced primarily a ferrous carbonate phase reminiscent of siderite, and with akaganeite, magnetite and a ferrous phosphate phase similar to vivianite were formed. showed minor biogenic production of a ferrous phosphate similar to vivianite when grown on lepidocrocite, and a mixed valent phosphate or sulfate mineral when grown on akaganeite. These results expand the range of biogenic mineral transformations at high temperatures and identify spacecraft-relevant spectroscopies suitable for discriminating mineral biogenicity.

摘要

两种嗜热铁还原古菌 和 的矿物转化作用分别以合成纳米水铁矿、纤铁矿和板钛矿作为末端电子受体进行了研究,并与相似条件下的非生物矿物转化进行了比较。采用可见-近红外、傅里叶变换衰减全反射(FTIR-ATR)、拉曼和穆斯堡尔光谱学的光谱分析是互补的,并揭示了各种生物矿物组合的形成,这些组合与非生物相区分开来。最广泛的生物矿化转化发生在水铁矿上,形成了主要的磁铁矿,其光谱特征与生物磁铁矿相对于合成磁铁矿标准相似。 还原的水铁矿的 FTIR-ATR 光谱也显示出可能与细胞相关的有机物,如胞外多糖。这些生物矿物组合和有机物的综合检测可能成为高温铁(III)还原的生物标志物。对于纤铁矿, 主要产生一种类似于菱铁矿的亚铁碳酸盐相,而对于板钛矿,形成了磁铁矿和类似于蓝铁矿的亚铁磷酸盐相。 在纤铁矿上生长时,显示出少量类似于蓝铁矿的亚铁磷酸盐的生物生成,而在板钛矿上生长时,形成混合价态的磷酸盐或硫酸盐矿物。这些结果扩展了高温下生物矿化转化的范围,并确定了适合区分矿物生物成因的航天器相关光谱学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cd/9810357/ac3c7f2642a4/ast.2022.0042_figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验