Suppr超能文献

嗜热嗜酸菌中矿物质基质获取的机制

Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile.

机构信息

Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA.

Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA

出版信息

Appl Environ Microbiol. 2018 May 31;84(12). doi: 10.1128/AEM.00334-18. Print 2018 Jun 15.

Abstract

The thermoacidophile is widely distributed in Yellowstone National Park hot springs that span large gradients in pH (1.60 to 4.84), temperature (42 to 90°C), and mineralogical composition. To characterize the potential role of flexibility in mineral-dependent energy metabolism in contributing to the widespread ecological distribution of this organism, we characterized the spectrum of minerals capable of supporting metabolism and the mechanisms that it uses to access these minerals. The energy metabolism of strain DS80 was supported by elemental sulfur (S), a variety of iron (hydr)oxides, and arsenic sulfide. Strain DS80 reduced, oxidized, and disproportionated S Cells growing via S reduction and disproportionation did not require direct access to the mineral to reduce it, whereas cells growing via S oxidation did require direct access, observations that are attributable to the role of HS produced by S reduction/disproportionation in solubilizing and increasing the bioavailability of S Cells growing via iron (hydr)oxide reduction did not require access to the mineral, suggesting that the cells reduce Fe(III) that is being leached by the acidic growth medium. Cells growing via oxidation of arsenic sulfide with Fe(III) did not require access to the mineral to grow. The stoichiometry of reactants to products indicates that cells oxidize soluble As(III) released from oxidation of arsenic sulfide by aqueous Fe(III). Taken together, these observations underscore the importance of feedbacks between abiotic and biotic reactions in influencing the bioavailability of mineral substrates and defining ecological niches capable of supporting microbial metabolism. Mineral sources of electron donor and acceptor that support microbial metabolism are abundant in the natural environment. However, the spectrum of minerals capable of supporting a given microbial strain and the mechanisms that are used to access these minerals in support of microbial energy metabolism are often unknown, in particular among thermoacidophiles. Here, we show that the thermoacidophile strain DS80 is adapted to use a variety of iron (hydro)oxide minerals, elemental sulfur, and arsenic sulfide to support growth. Cells rely on a complex interplay of abiologically and biologically catalyzed reactions that increase the solubility or bioavailability of minerals, thereby enabling their use in microbial metabolism.

摘要

嗜酸热菌广泛分布于黄石国家公园温泉中,这些温泉具有很大的 pH 值(1.60 到 4.84)、温度(42 到 90°C)和矿物组成梯度。为了描述在矿物依赖性能量代谢中灵活性的潜在作用,以及它在该生物广泛生态分布中的作用,我们对能够支持代谢的矿物谱以及它用来获取这些矿物的机制进行了描述。DS80 菌株的能量代谢由元素硫(S)、各种铁(氢)氧化物和砷硫化物支持。DS80 菌株还原、氧化和歧化 S. 通过 S 还原和歧化生长的细胞不需要直接接触矿物就能还原它,而通过 S 氧化生长的细胞则需要直接接触矿物,这些观察结果归因于 S 还原/歧化产生的 HS 在溶解和增加 S 的生物利用度方面的作用。通过铁(氢)氧化物还原生长的细胞不需要接触矿物,这表明细胞还原被酸性生长介质浸出的 Fe(III)。通过砷硫化物与 Fe(III)氧化生长的细胞不需要接触矿物就能生长。反应物与产物的化学计量比表明,细胞氧化由砷硫化物氧化释放的可溶性 As(III)。总的来说,这些观察结果强调了生物和非生物反应之间的反馈在影响矿物底物的生物利用度和定义能够支持微生物代谢的生态位方面的重要性。支持微生物代谢的电子供体和受体的矿物来源在自然环境中很丰富。然而,在支持微生物能量代谢方面,能够支持给定微生物菌株的矿物谱以及用于获取这些矿物的机制通常是未知的,特别是在嗜酸热菌中。在这里,我们表明,嗜酸热菌 DS80 菌株适应于使用各种铁(氢)氧化物矿物、元素硫和砷硫化物来支持生长。细胞依赖于一系列复杂的生物和生物催化反应的相互作用,这些反应增加了矿物的溶解度或生物利用度,从而使它们能够用于微生物代谢。

相似文献

1
Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile.嗜热嗜酸菌中矿物质基质获取的机制
Appl Environ Microbiol. 2018 May 31;84(12). doi: 10.1128/AEM.00334-18. Print 2018 Jun 15.

引用本文的文献

3
Sulfide oxidation by members of the Sulfolobales.硫化叶菌目成员对硫化物的氧化作用。
PNAS Nexus. 2024 May 23;3(6):pgae201. doi: 10.1093/pnasnexus/pgae201. eCollection 2024 Jun.

本文引用的文献

2
Geobiological feedbacks and the evolution of thermoacidophiles.地质生物反馈与嗜热嗜酸菌的演化。
ISME J. 2018 Jan;12(1):225-236. doi: 10.1038/ismej.2017.162. Epub 2017 Oct 13.
7
Elemental sulfur coarsening kinetics.元素硫粗化动力学
Geochem Trans. 2014 Aug 6;15:11. doi: 10.1186/s12932-014-0011-z. eCollection 2014.
8
Carbon source preference in chemosynthetic hot spring communities.化能合成温泉群落中的碳源偏好
Appl Environ Microbiol. 2015 Jun;81(11):3834-47. doi: 10.1128/AEM.00511-15. Epub 2015 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验