Hansel Colleen M, Benner Shawn G, Fendorf Scott
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA.
Environ Sci Technol. 2005 Sep 15;39(18):7147-53. doi: 10.1021/es050666z.
Owing to its high surface area and intrinsic reactivity, ferrihydrite serves as a dominant sink for numerous metals and nutrients in surface environments and is a potentially important terminal electron acceptor for microbial respiration. Introduction of Fe (II), by reductive dissolution of Fe(III) minerals, for example, converts ferrihydrite to Fe phases varying in their retention and reducing capacity. While Fe(II) concentration is the master variable dictating secondary mineralization pathways of ferrihydrite, here we reveal thatthe kinetics of conversion and ultimate mineral assemblage are a function of competing mineralization pathways influenced by pH and stabilizing ligands. Reaction of Fe(II) with ferrihydrite results in the precipitation of goethite, lepidocrocite, and magnetite. The three phases vary in their precipitation extent, rate, and residence time, all of which are primarily a function of Fe(II) concentration and ligand type (Cl, SO4, CO3). While lepidocrocite and goethite precipitate over a large Fe(II) concentration range, magnetite accumulation is only observed at surface loadings greater than 1.0 mmol Fe(II)/g ferrihydrite (in the absence of bicarbonate). Precipitation of magnetite induces the dissolution of lepidocrocite (presence of Cl) or goethite (presence of SO4), allowing for Fe(III)-dependent crystal growth. The rate of magnetite precipitation is a function of the relative proportions of goethite to lepidocrocite; the lower solubility of the former Fe (hydr)oxide slows magnetite precipitation. A one unit pH deviation from 7, however, either impedes (pH 6) or enhances (pH 8) magnetite precipitation. In the absence of magnetite nucleation, lepidocrocite and goethite continue to precipitate at the expense of ferrihydrite with near complete conversion within hours, the relative proportions of the two hydroxides dependent upon the ligand present. Goethite also continues to precipitate at the expense of lepidocrocite in the absence of chloride. In fact, the rate and extent of both goethite and magnetite precipitation are influenced by conditions conducive to the production and stability of lepidocrocite. Thus, predicting the secondary mineralization of ferrihydrite, a process having sweeping influences on contaminant/nutrient dynamics, will need to take into consideration kinetic restraints and transient precursor phases (e.g., lepidocrocite) that influence ensuing reaction pathways.
由于其高比表面积和固有反应性,水铁矿是地表环境中多种金属和养分的主要汇,并且是微生物呼吸潜在的重要终端电子受体。例如,通过Fe(III)矿物的还原溶解引入Fe(II),会将水铁矿转化为保留和还原能力各异的Fe相。虽然Fe(II)浓度是决定水铁矿二次矿化途径的主要变量,但我们在此揭示,转化动力学和最终矿物组合是受pH值和稳定配体影响的竞争矿化途径的函数。Fe(II)与水铁矿反应会导致针铁矿、纤铁矿和磁铁矿沉淀。这三种相在沉淀程度、速率和停留时间上各不相同,所有这些主要是Fe(II)浓度和配体类型(Cl、SO4、CO3)的函数。虽然纤铁矿和针铁矿在较大的Fe(II)浓度范围内沉淀,但仅在表面负载大于1.0 mmol Fe(II)/g水铁矿时(在没有碳酸氢盐的情况下)才观察到磁铁矿的积累。磁铁矿的沉淀会诱导纤铁矿(存在Cl时)或针铁矿(存在SO4时)的溶解,从而实现依赖Fe(III)的晶体生长。磁铁矿的沉淀速率是针铁矿与纤铁矿相对比例的函数;前者铁(氢)氧化物较低的溶解度会减缓磁铁矿的沉淀。然而,pH值偏离7一个单位,要么会阻碍(pH 6)要么会增强(pH 8)磁铁矿的沉淀。在没有磁铁矿成核的情况下,纤铁矿和针铁矿会继续以水铁矿为代价沉淀,数小时内几乎完全转化,两种氢氧化物的相对比例取决于存在的配体。在没有氯离子的情况下,针铁矿也会继续以纤铁矿为代价沉淀。事实上,针铁矿和磁铁矿沉淀的速率和程度都受有利于纤铁矿生成和稳定的条件影响。因此,预测对污染物/养分动态有广泛影响的水铁矿二次矿化过程,需要考虑影响后续反应途径的动力学限制和瞬态前驱相(如纤铁矿)。